Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
3.
Nat Commun ; 15(1): 4247, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762483

RESUMO

The in vivo efficacy of polymeric nanoparticles (NPs) is dependent on their pharmacokinetics, including time in circulation and tissue tropism. Here we explore the structure-function relationships guiding physiological fate of a library of poly(amine-co-ester) (PACE) NPs with different compositions and surface properties. We find that circulation half-life as well as tissue and cell-type tropism is dependent on polymer chemistry, vehicle characteristics, dosing, and strategic co-administration of distribution modifiers, suggesting that physiological fate can be optimized by adjusting these parameters. Our high-throughput quantitative microscopy-based platform to measure the concentration of nanomedicines in the blood combined with detailed biodistribution assessments and pharmacokinetic modeling provides valuable insight into the dynamic in vivo behavior of these polymer NPs. Our results suggest that PACE NPs-and perhaps other NPs-can be designed with tunable properties to achieve desired tissue tropism for the in vivo delivery of nucleic acid therapeutics. These findings can guide the rational design of more effective nucleic acid delivery vehicles for in vivo applications.


Assuntos
Macrófagos , Nanopartículas , Polímeros , Animais , Nanopartículas/química , Distribuição Tecidual , Camundongos , Polímeros/química , Macrófagos/metabolismo , Humanos , Feminino , Sistemas de Liberação de Medicamentos , Camundongos Endogâmicos C57BL
4.
J Invest Dermatol ; 143(8): 1412-1422, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37341663

RESUMO

Immunologically targeted therapies have revolutionized the treatment of inflammatory dermatoses, including atopic dermatitis and psoriasis. Although immunologic biomarkers hold great promise for personalized classification of skin disease and tailored therapy selection, there are no approved or widely used approaches for this in dermatology. This review summarizes the translational immunologic approaches to measuring treatment-relevant biomarkers in inflammatory skin conditions. Tape strip profiling, microneedle-based biomarker patches, molecular profiling from epidermal curettage, RNA in situ hybridization tissue staining, and single-cell RNA sequencing have been described. We discuss the advantages and limitations of each and open questions for the future of personalized medicine in inflammatory skin disease.


Assuntos
Dermatite Atópica , Dermatologia , Psoríase , Dermatopatias , Humanos , Dermatite Atópica/diagnóstico , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/genética , Medicina de Precisão , Psoríase/diagnóstico , Psoríase/tratamento farmacológico , Psoríase/genética , Biomarcadores
5.
Mol Ther Oncolytics ; 28: 74-87, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36699615

RESUMO

Multiple clinical trials exploring the potential of adoptive natural killer (NK) cell therapy for cancer have employed ex vivo expansion using feeder cells to obtain large numbers of NK cells. We have previously utilized the rhesus macaque model to clonally track the NK cell progeny of barcode-transduced CD34+ stem and progenitor cells after transplant. In this study, NK cells from barcoded rhesus macaques were used to study the changes in NK cell clonal patterns that occurred during ex vivo expansion using culture protocols similar to those employed in clinical preparation of human NK cells including irradiated lymphoblastoid cell line (LCL) feeder cells or K562 cells expressing 4-1BBL and membrane-bound interleukin-21 (IL-21). NK expansion cultures resulted in the proliferation of clonally diverse NK cells, which, at day 14 harvest, contained greater than 50% of the starting barcode repertoire. Diversity as measured by Shannon index was maintained after culture. With both LCL and K562 feeders, proliferation of long-lived putative memory-like NK cell clones was observed, with these clones continuing to constitute a mean of 31% of the total repertoire of expanded cells. These experiments provide insight into the clonal makeup of expanded NK cell clinical products.

6.
Mol Ther Methods Clin Dev ; 28: 62-75, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36620072

RESUMO

The clonal dynamics following hematopoietic stem progenitor cell (HSPC) transplantation with busulfan conditioning are of great interest to the development of HSPC gene therapies. Compared with total body irradiation (TBI), busulfan is less toxic and more clinically relevant. We used a genetic barcoded HSPC autologous transplantation model to investigate the impact of busulfan conditioning on hematopoietic reconstitution in rhesus macaques. Two animals received lower busulfan dose and demonstrated lower vector marking levels compared with the third animal given a higher busulfan dose, despite similar busulfan pharmacokinetic analysis. We observed uni-lineage clonal engraftment at 1 month post-transplant, replaced by multilineage clones by 2 to 3 months in all animals. The initial multilineage clones in the first two animals were replaced by a second multilineage wave at 9 months; this clonal pattern disappeared at 13 months in the first animal, though was maintained in the second animal. The third animal maintained stable multilineage clones from 3 months to the most recent time point. In addition, busulfan animals exhibit more rapid HSPC clonal mixing across bone marrow sites and less CD16+ NK-biased clonal expansion compared with TBI animals. Therefore, busulfan conditioning regimens can variably impact the marrow niche, resulting in differences in clonal patterns with implications for HSPC gene therapies.

7.
Front Immunol ; 13: 994498, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36605190

RESUMO

Tissue resident (TR) immune cells play important roles in facilitating tissue homeostasis, coordinating immune responses against infections and tumors, and maintaining immunological memory. While studies have shown these cells are distinct phenotypically and functionally from cells found in the peripheral blood (PB), the clonal relationship between these populations across tissues has not been comprehensively studied in primates or humans. We utilized autologous transplantation of rhesus macaque hematopoietic stem and progenitor cells containing high diversity barcodes to track the clonal distribution of T, B, myeloid and natural killer (NK) cell populations across tissues, including liver, spleen, lung, and gastrointestinal (GI) tract, in comparison with PB longitudinally post-transplantation, in particular we focused on NK cells which do not contain endogenous clonal markers and have not been previously studied in this context. T cells demonstrated tissue-specific clonal expansions as expected, both overlapping and distinct from blood T cells. In contrast, B and myeloid cells showed a much more homogeneous clonal pattern across various tissues and the blood. The clonal distribution of TR NK was more heterogenous between individual animals. In some animals, as we have previously reported, we observed large PB clonal expansions in mature CD56-CD16+ NK cells. Notably, we found a separate set of highly expanded PB clones in CD16-CD56- (DN) NK subset that were also contributing to TR NK cells in all tissues examined, both in TR CD56-CD16+ and DN populations but absent in CD56+16- TR NK across all tissues analyzed. Additionally, we observed sets of TR NK clones specific to individual tissues such as lung or GI tract and sets of TR NK clones shared across liver and spleen, distinct from other tissues. Combined with prior functional data that suggests NK memory is restricted to liver or other TR NK cells, these clonally expanded TR NK cells may be of interest for future investigation into NK cell tissue immunological memory, with implications for development of NK based immunotherapies and an understanding of NK memory.


Assuntos
Células Matadoras Naturais , Células Mieloides , Animais , Células Clonais , Macaca mulatta
8.
Cell Mol Bioeng ; 14(1): 15-30, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33633812

RESUMO

INTRODUCTION: The expansion of insulin-producing beta cells during pregnancy is critical to maintain glucose homeostasis in the face of increasing insulin resistance. Prolactin receptor (PRLR) signaling is one of the primary mediators of beta cell expansion during pregnancy, and loss of PRLR signaling results in reduced beta cell mass and gestational diabetes. Harnessing the proliferative potential of prolactin signaling to expand beta cell mass outside of the context of pregnancy requires quantitative understanding of the signaling at the molecular level. METHODS: A mechanistic computational model was constructed to describe prolactin-mediated JAK-STAT signaling in pancreatic beta cells. The effect of different regulatory modules was explored through ensemble modeling. A Bayesian approach for likelihood estimation was used to fit the model to experimental data from the literature. RESULTS: Including receptor upregulation, with either inhibition by SOCS proteins, receptor internalization, or both, allowed the model to match experimental results for INS-1 cells treated with prolactin. The model predicts that faster dimerization and nuclear import rates of STAT5B compared to STAT5A can explain the higher STAT5B nuclear translocation. The model was used to predict the dose response of STAT5B translocation in rat primary beta cells treated with prolactin and reveal possible strategies to modulate STAT5 signaling. CONCLUSIONS: JAK-STAT signaling must be tightly controlled to obtain the biphasic response in STAT5 activation seen experimentally. Receptor up-regulation, combined with SOCS inhibition, receptor internalization, or both is required to match experimental data. Modulating reactions upstream in the signaling can enhance STAT5 activation to increase beta cell survival.

9.
Nat Comput Sci ; 1(4): 280-289, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37621673

RESUMO

Clonal tracking methods provide quantitative insights into the cellular output of genetically labelled progenitor cells across time and cellular compartments. In the context of gene and cell therapies, clonal tracking methods have enabled the tracking of progenitor cell output both in humans receiving therapies and in corresponding animal models, providing valuable insight into lineage reconstitution, clonal dynamics, and vector genotoxicity. However, the absence of a toolbox for analysis of clonal tracking data has precluded the development of standardized analytical frameworks within the field. Thus, we developed barcodetrackR, an R package and accompanying Shiny app containing diverse tools for the analysis and visualization of clonal tracking data. We demonstrate the utility of barcodetrackR in exploring longitudinal clonal patterns and lineage relationships in a number of clonal tracking studies of hematopoietic stem and progenitor cells (HSPCs) in humans receiving HSPC gene therapy and in animals receiving lentivirally transduced HSPC transplants or tumor cells.

10.
Front Immunol ; 12: 772332, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095846

RESUMO

The in vivo tissue distribution and trafficking patterns of natural killer (NK) cells remain understudied. Animal models can help bridge the gap, and rhesus macaque (RM) primates faithfully recapitulate key elements of human NK cell biology. Here, we profiled the tissue distribution and localization patterns of three NK cell subsets across various RM tissues. We utilized serial intravascular staining (SIVS) to investigate the tissue trafficking kinetics at steady state and during recovery from CD16 depletion. We found that at steady state, CD16+ NK cells were selectively retained in the vasculature while CD56+ NK cells had a shorter residence time in peripheral blood. We also found that different subsets of NK cells had distinct trafficking kinetics to and from the lymph node as well as other lymphoid and non-lymphoid tissues. Lastly, we found that following administration of CD16-depleting antibody, CD16+ NK cells and their putative precursors retained a high proportion of continuously circulating cells, suggesting that regeneration of the CD16 NK compartment may take place in peripheral blood or the perivascular compartments of tissues.


Assuntos
Células Matadoras Naturais/imunologia , Macaca mulatta/imunologia , Animais , Antígeno CD56/imunologia , Cinética , Linfonodos/imunologia , Coloração e Rotulagem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa