Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(42): e2205772119, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36215503

RESUMO

The power grid is going through significant changes with the introduction of renewable energy sources and the incorporation of smart grid technologies. These rapid advancements necessitate new models and analyses to keep up with the various emergent phenomena they induce. A major prerequisite of such work is the acquisition of well-constructed and accurate network datasets for the power grid infrastructure. In this paper, we propose a robust, scalable framework to synthesize power distribution networks that resemble their physical counterparts for a given region. We use openly available information about interdependent road and building infrastructures to construct the networks. In contrast to prior work based on network statistics, we incorporate engineering and economic constraints to create the networks. Additionally, we provide a framework to create ensembles of power distribution networks to generate multiple possible instances of the network for a given region. The comprehensive dataset consists of nodes with attributes, such as geocoordinates; type of node (residence, transformer, or substation); and edges with attributes, such as geometry, type of line (feeder lines, primary or secondary), and line parameters. For validation, we provide detailed comparisons of the generated networks with actual distribution networks. The generated datasets represent realistic test systems (as compared with standard test cases published by Institute of Electrical and Electronics Engineers (IEEE)) that can be used by network scientists to analyze complex events in power grids and to perform detailed sensitivity and statistical analyses over ensembles of networks.


Assuntos
Fontes de Energia Elétrica
2.
PLoS Med ; 21(4): e1004387, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38630802

RESUMO

BACKGROUND: Coronavirus Disease 2019 (COVID-19) continues to cause significant hospitalizations and deaths in the United States. Its continued burden and the impact of annually reformulated vaccines remain unclear. Here, we present projections of COVID-19 hospitalizations and deaths in the United States for the next 2 years under 2 plausible assumptions about immune escape (20% per year and 50% per year) and 3 possible CDC recommendations for the use of annually reformulated vaccines (no recommendation, vaccination for those aged 65 years and over, vaccination for all eligible age groups based on FDA approval). METHODS AND FINDINGS: The COVID-19 Scenario Modeling Hub solicited projections of COVID-19 hospitalization and deaths between April 15, 2023 and April 15, 2025 under 6 scenarios representing the intersection of considered levels of immune escape and vaccination. Annually reformulated vaccines are assumed to be 65% effective against symptomatic infection with strains circulating on June 15 of each year and to become available on September 1. Age- and state-specific coverage in recommended groups was assumed to match that seen for the first (fall 2021) COVID-19 booster. State and national projections from 8 modeling teams were ensembled to produce projections for each scenario and expected reductions in disease outcomes due to vaccination over the projection period. From April 15, 2023 to April 15, 2025, COVID-19 is projected to cause annual epidemics peaking November to January. In the most pessimistic scenario (high immune escape, no vaccination recommendation), we project 2.1 million (90% projection interval (PI) [1,438,000, 4,270,000]) hospitalizations and 209,000 (90% PI [139,000, 461,000]) deaths, exceeding pre-pandemic mortality of influenza and pneumonia. In high immune escape scenarios, vaccination of those aged 65+ results in 230,000 (95% confidence interval (CI) [104,000, 355,000]) fewer hospitalizations and 33,000 (95% CI [12,000, 54,000]) fewer deaths, while vaccination of all eligible individuals results in 431,000 (95% CI: 264,000-598,000) fewer hospitalizations and 49,000 (95% CI [29,000, 69,000]) fewer deaths. CONCLUSIONS: COVID-19 is projected to be a significant public health threat over the coming 2 years. Broad vaccination has the potential to substantially reduce the burden of this disease, saving tens of thousands of lives each year.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Hospitalização , SARS-CoV-2 , Vacinação , Humanos , Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/epidemiologia , COVID-19/imunologia , Estados Unidos/epidemiologia , Idoso , Hospitalização/estatística & dados numéricos , SARS-CoV-2/imunologia , Pessoa de Meia-Idade , Adulto , Adolescente , Adulto Jovem , Criança , Idoso de 80 Anos ou mais , Masculino
3.
Chaos ; 33(2): 023118, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36859214

RESUMO

Mathematical models rooted in network representations are becoming increasingly more common for capturing a broad range of phenomena. Boolean networks (BNs) represent a mathematical abstraction suited for establishing general theory applicable to such systems. A key thread in BN research is developing theory that connects the structure of the network and the local rules to phase space properties or so-called structure-to-function theory. While most theory for BNs has been developed for the synchronous case, the focus of this work is on asynchronously updated BNs (ABNs) which are natural to consider from the point of view of applications to real systems where perfect synchrony is uncommon. A central question in this regard is sensitivity of dynamics of ABNs with respect to perturbations to the asynchronous update scheme. Macauley & Mortveit [Nonlinearity 22, 421-436 (2009)] showed that the periodic orbits are structurally invariant under toric equivalence of the update sequences. In this paper and under the same equivalence of the update scheme, the authors (i) extend that result to the entire phase space, (ii) establish a Lipschitz continuity result for sequences of maximal transient paths, and (iii) establish that within a toric equivalence class the maximal transient length may at most take on two distinct values. In addition, the proofs offer insight into the general asynchronous phase space of Boolean networks.

4.
Int J High Perform Comput Appl ; 37(1): 4-27, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38603425

RESUMO

This paper describes an integrated, data-driven operational pipeline based on national agent-based models to support federal and state-level pandemic planning and response. The pipeline consists of (i) an automatic semantic-aware scheduling method that coordinates jobs across two separate high performance computing systems; (ii) a data pipeline to collect, integrate and organize national and county-level disaggregated data for initialization and post-simulation analysis; (iii) a digital twin of national social contact networks made up of 288 Million individuals and 12.6 Billion time-varying interactions covering the US states and DC; (iv) an extension of a parallel agent-based simulation model to study epidemic dynamics and associated interventions. This pipeline can run 400 replicates of national runs in less than 33 h, and reduces the need for human intervention, resulting in faster turnaround times and higher reliability and accuracy of the results. Scientifically, the work has led to significant advances in real-time epidemic sciences.

5.
PLoS Comput Biol ; 15(9): e1007111, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31525184

RESUMO

Prophylactic interventions such as vaccine allocation are some of the most effective public health policy planning tools. The supply of vaccines, however, is limited and an important challenge is to optimally allocate the vaccines to minimize epidemic impact. This resource allocation question (which we refer to as VaccIntDesign) has multiple dimensions: when, where, to whom, etc. Most of the existing literature in this topic deals with the latter (to whom), proposing policies that prioritize individuals by age and disease risk. However, since seasonal influenza spread has a typical spatial trend, and due to the temporal constraints enforced by the availability schedule, the when and where problems become equally, if not more, relevant. In this paper, we study the VaccIntDesign problem in the context of seasonal influenza spread in the United States. We develop a national scale metapopulation model for influenza that integrates both short and long distance human mobility, along with realistic data on vaccine uptake. We also design GreedyAlloc, a greedy algorithm for allocating the vaccine supply at the state level under temporal constraints and show that such a strategy improves over the current baseline of pro-rata allocation, and the improvement is more pronounced for higher vaccine efficacy and moderate flu season intensity. Further, the resulting strategy resembles a ring vaccination applied spatiallyacross the US.


Assuntos
Biologia Computacional/métodos , Vacinas contra Influenza/administração & dosagem , Influenza Humana , Alocação de Recursos/métodos , Análise Espaço-Temporal , Algoritmos , Bases de Dados Factuais , Humanos , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Influenza Humana/transmissão , Estações do Ano , Fatores de Tempo , Viagem/estatística & dados numéricos , Estados Unidos
6.
Proc Biol Sci ; 286(1913): 20191159, 2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31615355

RESUMO

Modern food systems facilitate rapid dispersal of pests and pathogens through multiple pathways. The complexity of spread dynamics and data inadequacy make it challenging to model the phenomenon and also to prepare for emerging invasions. We present a generic framework to study the spatio-temporal spread of invasive species as a multi-scale propagation process over a time-varying network accounting for climate, biology, seasonal production, trade and demographic information. Machine learning techniques are used in a novel manner to capture model variability and analyse parameter sensitivity. We applied the framework to understand the spread of a devastating pest of tomato, Tuta absoluta, in South and Southeast Asia, a region at the frontier of its current range. Analysis with respect to historical invasion records suggests that even with modest self-mediated spread capabilities, the pest can quickly expand its range through domestic city-to-city vegetable trade. Our models forecast that within 5-7 years, Tuta absoluta will invade all major vegetable growing areas of mainland Southeast Asia assuming unmitigated spread. Monitoring high-consumption areas can help in early detection, and targeted interventions at major production areas can effectively reduce the rate of spread.


Assuntos
Espécies Introduzidas , Mariposas , Agricultura , Animais , Solanum lycopersicum
7.
Bull Math Biol ; 81(5): 1442-1460, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30656504

RESUMO

We present mathematical techniques for exhaustive studies of long-term dynamics of asynchronous biological system models. Specifically, we extend the notion of [Formula: see text]-equivalence developed for graph dynamical systems to support systematic analysis of all possible attractor configurations that can be generated when varying the asynchronous update order (Macauley and Mortveit in Nonlinearity 22(2):421, 2009). We extend earlier work by Veliz-Cuba and Stigler (J Comput Biol 18(6):783-794, 2011), Goles et al. (Bull Math Biol 75(6):939-966, 2013), and others by comparing long-term dynamics up to topological conjugation: rather than comparing the exact states and their transitions on attractors, we only compare the attractor structures. In general, obtaining this information is computationally intractable. Here, we adapt and apply combinatorial theory for dynamical systems from Macauley and Mortveit (Proc Am Math Soc 136(12):4157-4165, 2008. https://doi.org/10.1090/S0002-9939-09-09884-0 ; 2009; Electron J Comb 18:197, 2011a; Discret Contin Dyn Syst 4(6):1533-1541, 2011b. https://doi.org/10.3934/dcdss.2011.4.1533 ; Theor Comput Sci 504:26-37, 2013. https://doi.org/10.1016/j.tcs.2012.09.015 ; in: Isokawa T, Imai K, Matsui N, Peper F, Umeo H (eds) Cellular automata and discrete complex systems, 2014. https://doi.org/10.1007/978-3-319-18812-6_6 ) to develop computational methods that greatly reduce this computational cost. We give a detailed algorithm and apply it to (i) the lac operon model for Escherichia coli proposed by Veliz-Cuba and Stigler (2011), and (ii) the regulatory network involved in the control of the cell cycle and cell differentiation in the Caenorhabditis elegans vulva precursor cells proposed by Weinstein et al. (BMC Bioinform 16(1):1, 2015). In both cases, we uncover all possible limit cycle structures for these networks under sequential updates. Specifically, for the lac operon model, rather than examining all [Formula: see text] sequential update orders, we demonstrate that it is sufficient to consider 344 representative update orders, and, more notably, that these 344 representatives give rise to 4 distinct attractor structures. A similar analysis performed for the C. elegans model demonstrates that it has precisely 125 distinct attractor structures. We conclude with observations on the variety and distribution of the models' attractor structures and use the results to discuss their robustness.


Assuntos
Modelos Biológicos , Algoritmos , Animais , Caenorhabditis elegans/citologia , Pontos de Checagem do Ciclo Celular , Diferenciação Celular , Escherichia coli/genética , Escherichia coli/metabolismo , Óperon Lac , Conceitos Matemáticos , Software , Biologia de Sistemas
8.
PNAS Nexus ; 3(3): pgae080, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38505694

RESUMO

The ongoing Russian aggression against Ukraine has forced over eight million people to migrate out of Ukraine. Understanding the dynamics of forced migration is essential for policy-making and for delivering humanitarian assistance. Existing work is hindered by a reliance on observational data which is only available well after the fact. In this work, we study the efficacy of a data-driven agent-based framework motivated by social and behavioral theory in predicting outflow of migrants as a result of conflict events during the initial phase of the Ukraine war. We discuss policy use cases for the proposed framework by demonstrating how it can leverage refugee demographic details to answer pressing policy questions. We also show how to incorporate conflict forecast scenarios to predict future conflict-induced migration flows. Detailed future migration estimates across various conflict scenarios can both help to reduce policymaker uncertainty and improve allocation and staging of limited humanitarian resources in crisis settings.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38774820

RESUMO

We present MacKenzie, a HPC-driven multi-cluster workflow system that was used repeatedly to configure and execute fine-grained US national-scale epidemic simulation models during the COVID-19 pandemic. Mackenzie supported federal and Virginia policymakers, in real-time, for a large number of "what-if" scenarios during the COVID-19 pandemic, and continues to be used to answer related questions as COVID-19 transitions to the endemic stage of the disease. MacKenzie is a novel HPC meta-scheduler that can execute US-scale simulation models and associated workflows that typically present significant big data challenges. The meta-scheduler optimizes the total execution time of simulations in the workflow, and helps improve overall human productivity. As an exemplar of the kind of studies that can be conducted using Mackenzie, we present a modeling study to understand the impact of vaccine-acceptance in controlling the spread of COVID-19 in the US. We use a 288 million node synthetic social contact network (digital twin) spanning all 50 US states plus Washington DC, comprised of 3300 counties, with 12 billion daily interactions. The highly-resolved agent-based model used for the epidemic simulations uses realistic information about disease progression, vaccine uptake, production schedules, acceptance trends, prevalence, and social distancing guidelines. Computational experiments show that, for the simulation workload discussed above, MacKenzie is able to scale up well to 10K CPU cores. Our modeling results show that, when compared to faster and accelerating vaccinations, slower vaccination rates due to vaccine hesitancy cause averted infections to drop from 6.7M to 4.5M, and averted total deaths to drop from 39.4K to 28.2K across the US. This occurs despite the fact that the final vaccine coverage is the same in both scenarios. We also find that if vaccine acceptance could be increased by 10% in all states, averted infections could be increased from 4.5M to 4.7M (a 4.4% improvement) and total averted deaths could be increased from 28.2K to 29.9K (a 6% improvement) nationwide.

10.
Front Psychol ; 14: 986289, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37359865

RESUMO

There is little significant work at the intersection of mathematical and computational epidemiology and detailed psychological processes, representations, and mechanisms. This is true despite general agreement in the scientific community and the general public that human behavior in its seemingly infinite variation and heterogeneity, susceptibility to bias, context, and habit is an integral if not fundamental component of what drives the dynamics of infectious disease. The COVID-19 pandemic serves as a close and poignant reminder. We offer a 10-year prospectus of kinds that centers around an unprecedented scientific approach: the integration of detailed psychological models into rigorous mathematical and computational epidemiological frameworks in a way that pushes the boundaries of both psychological science and population models of behavior.

11.
Sci Data ; 10(1): 76, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36746951

RESUMO

Efficient energy consumption is crucial for achieving sustainable energy goals in the era of climate change and grid modernization. Thus, it is vital to understand how energy is consumed at finer resolutions such as household in order to plan demand-response events or analyze impacts of weather, electricity prices, electric vehicles, solar, and occupancy schedules on energy consumption. However, availability and access to detailed energy-use data, which would enable detailed studies, has been rare. In this paper, we release a unique, large-scale, digital-twin of residential energy-use dataset for the residential sector across the contiguous United States covering millions of households. The data comprise of hourly energy use profiles for synthetic households, disaggregated into Thermostatically Controlled Loads (TCL) and appliance use. The underlying framework is constructed using a bottom-up approach. Diverse open-source surveys and first principles models are used for end-use modeling. Extensive validation of the synthetic dataset has been conducted through comparisons with reported energy-use data. We present a detailed, open, high resolution, residential energy-use dataset for the United States.

12.
Lancet Reg Health Am ; 17: 100398, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36437905

RESUMO

Background: The COVID-19 Scenario Modeling Hub convened nine modeling teams to project the impact of expanding SARS-CoV-2 vaccination to children aged 5-11 years on COVID-19 burden and resilience against variant strains. Methods: Teams contributed state- and national-level weekly projections of cases, hospitalizations, and deaths in the United States from September 12, 2021 to March 12, 2022. Four scenarios covered all combinations of 1) vaccination (or not) of children aged 5-11 years (starting November 1, 2021), and 2) emergence (or not) of a variant more transmissible than the Delta variant (emerging November 15, 2021). Individual team projections were linearly pooled. The effect of childhood vaccination on overall and age-specific outcomes was estimated using meta-analyses. Findings: Assuming that a new variant would not emerge, all-age COVID-19 outcomes were projected to decrease nationally through mid-March 2022. In this setting, vaccination of children 5-11 years old was associated with reductions in projections for all-age cumulative cases (7.2%, mean incidence ratio [IR] 0.928, 95% confidence interval [CI] 0.880-0.977), hospitalizations (8.7%, mean IR 0.913, 95% CI 0.834-0.992), and deaths (9.2%, mean IR 0.908, 95% CI 0.797-1.020) compared with scenarios without childhood vaccination. Vaccine benefits increased for scenarios including a hypothesized more transmissible variant, assuming similar vaccine effectiveness. Projected relative reductions in cumulative outcomes were larger for children than for the entire population. State-level variation was observed. Interpretation: Given the scenario assumptions (defined before the emergence of Omicron), expanding vaccination to children 5-11 years old would provide measurable direct benefits, as well as indirect benefits to the all-age U.S. population, including resilience to more transmissible variants. Funding: Various (see acknowledgments).

13.
medRxiv ; 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37961207

RESUMO

Importance: COVID-19 continues to cause significant hospitalizations and deaths in the United States. Its continued burden and the impact of annually reformulated vaccines remain unclear. Objective: To project COVID-19 hospitalizations and deaths from April 2023-April 2025 under two plausible assumptions about immune escape (20% per year and 50% per year) and three possible CDC recommendations for the use of annually reformulated vaccines (no vaccine recommendation, vaccination for those aged 65+, vaccination for all eligible groups). Design: The COVID-19 Scenario Modeling Hub solicited projections of COVID-19 hospitalization and deaths between April 15, 2023-April 15, 2025 under six scenarios representing the intersection of considered levels of immune escape and vaccination. State and national projections from eight modeling teams were ensembled to produce projections for each scenario. Setting: The entire United States. Participants: None. Exposure: Annually reformulated vaccines assumed to be 65% effective against strains circulating on June 15 of each year and to become available on September 1. Age and state specific coverage in recommended groups was assumed to match that seen for the first (fall 2021) COVID-19 booster. Main outcomes and measures: Ensemble estimates of weekly and cumulative COVID-19 hospitalizations and deaths. Expected relative and absolute reductions in hospitalizations and deaths due to vaccination over the projection period. Results: From April 15, 2023-April 15, 2025, COVID-19 is projected to cause annual epidemics peaking November-January. In the most pessimistic scenario (high immune escape, no vaccination recommendation), we project 2.1 million (90% PI: 1,438,000-4,270,000) hospitalizations and 209,000 (90% PI: 139,000-461,000) deaths, exceeding pre-pandemic mortality of influenza and pneumonia. In high immune escape scenarios, vaccination of those aged 65+ results in 230,000 (95% CI: 104,000-355,000) fewer hospitalizations and 33,000 (95% CI: 12,000-54,000) fewer deaths, while vaccination of all eligible individuals results in 431,000 (95% CI: 264,000-598,000) fewer hospitalizations and 49,000 (95% CI: 29,000-69,000) fewer deaths. Conclusion and Relevance: COVID-19 is projected to be a significant public health threat over the coming two years. Broad vaccination has the potential to substantially reduce the burden of this disease.

14.
Front Big Data ; 5: 796897, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35198973

RESUMO

Globalization and climate change facilitate the spread and establishment of invasive species throughout the world via multiple pathways. These spread mechanisms can be effectively represented as diffusion processes on multi-scale, spatial networks. Such network-based modeling and simulation approaches are being increasingly applied in this domain. However, these works tend to be largely domain-specific, lacking any graph theoretic formalisms, and do not take advantage of more recent developments in network science. This work is aimed toward filling some of these gaps. We develop a generic multi-scale spatial network framework that is applicable to a wide range of models developed in the literature on biological invasions. A key question we address is the following: how do individual pathways and their combinations influence the rate and pattern of spread? The analytical complexity arises more from the multi-scale nature and complex functional components of the networks rather than from the sizes of the networks. We present theoretical bounds on the spectral radius and the diameter of multi-scale networks. These two structural graph parameters have established connections to diffusion processes. Specifically, we study how network properties, such as spectral radius and diameter are influenced by model parameters. Further, we analyze a multi-pathway diffusion model from the literature by conducting simulations on synthetic and real-world networks and then use regression tree analysis to identify the important network and diffusion model parameters that influence the dynamics.

15.
medRxiv ; 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35313593

RESUMO

Background: SARS-CoV-2 vaccination of persons aged 12 years and older has reduced disease burden in the United States. The COVID-19 Scenario Modeling Hub convened multiple modeling teams in September 2021 to project the impact of expanding vaccine administration to children 5-11 years old on anticipated COVID-19 burden and resilience against variant strains. Methods: Nine modeling teams contributed state- and national-level projections for weekly counts of cases, hospitalizations, and deaths in the United States for the period September 12, 2021 to March 12, 2022. Four scenarios covered all combinations of: 1) presence vs. absence of vaccination of children ages 5-11 years starting on November 1, 2021; and 2) continued dominance of the Delta variant vs. emergence of a hypothetical more transmissible variant on November 15, 2021. Individual team projections were combined using linear pooling. The effect of childhood vaccination on overall and age-specific outcomes was estimated by meta-analysis approaches. Findings: Absent a new variant, COVID-19 cases, hospitalizations, and deaths among all ages were projected to decrease nationally through mid-March 2022. Under a set of specific assumptions, models projected that vaccination of children 5-11 years old was associated with reductions in all-age cumulative cases (7.2%, mean incidence ratio [IR] 0.928, 95% confidence interval [CI] 0.880-0.977), hospitalizations (8.7%, mean IR 0.913, 95% CI 0.834-0.992), and deaths (9.2%, mean IR 0.908, 95% CI 0.797-1.020) compared with scenarios where children were not vaccinated. This projected effect of vaccinating children 5-11 years old increased in the presence of a more transmissible variant, assuming no change in vaccine effectiveness by variant. Larger relative reductions in cumulative cases, hospitalizations, and deaths were observed for children than for the entire U.S. population. Substantial state-level variation was projected in epidemic trajectories, vaccine benefits, and variant impacts. Conclusions: Results from this multi-model aggregation study suggest that, under a specific set of scenario assumptions, expanding vaccination to children 5-11 years old would provide measurable direct benefits to this age group and indirect benefits to the all-age U.S. population, including resilience to more transmissible variants.

16.
Sci Rep ; 11(1): 20451, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34650141

RESUMO

This research measures the epidemiological and economic impact of COVID-19 spread in the US under different mitigation scenarios, comprising of non-pharmaceutical interventions. A detailed disease model of COVID-19 is combined with a model of the US economy to estimate the direct impact of labor supply shock to each sector arising from morbidity, mortality, and lockdown, as well as the indirect impact caused by the interdependencies between sectors. During a lockdown, estimates of jobs that are workable from home in each sector are used to modify the shock to labor supply. Results show trade-offs between economic losses, and lives saved and infections averted are non-linear in compliance to social distancing and the duration of the lockdown. Sectors that are worst hit are not the labor-intensive sectors such as the Agriculture sector and the Construction sector, but the ones with high valued jobs such as the Professional Services, even after the teleworkability of jobs is accounted for. Additionally, the findings show that a low compliance to interventions can be overcome by a longer shutdown period and vice versa to arrive at similar epidemiological impact but their net effect on economic loss depends on the interplay between the marginal gains from averting infections and deaths, versus the marginal loss from having healthy workers stay at home during the shutdown.


Assuntos
COVID-19/epidemiologia , Agricultura/economia , COVID-19/economia , COVID-19/prevenção & controle , Controle de Doenças Transmissíveis , Indústria da Construção/economia , Emprego , Humanos , Indústrias/economia , Modelos Econômicos , SARS-CoV-2/isolamento & purificação , Teletrabalho , Estados Unidos/epidemiologia
17.
medRxiv ; 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33655263

RESUMO

The COVID-19 global outbreak represents the most significant epidemic event since the 1918 influenza pandemic. Simulations have played a crucial role in supporting COVID-19 planning and response efforts. Developing scalable workflows to provide policymakers quick responses to important questions pertaining to logistics, resource allocation, epidemic forecasts and intervention analysis remains a challenging computational problem. In this work, we present scalable high performance computing-enabled workflows for COVID-19 pandemic planning and response. The scalability of our methodology allows us to run fine-grained simulations daily, and to generate county-level forecasts and other counter-factual analysis for each of the 50 states (and DC), 3140 counties across the USA. Our workflows use a hybrid cloud/cluster system utilizing a combination of local and remote cluster computing facilities, and using over 20,000 CPU cores running for 6-9 hours every day to meet this objective. Our state (Virginia), state hospital network, our university, the DOD and the CDC use our models to guide their COVID-19 planning and response efforts. We began executing these pipelines March 25, 2020, and have delivered and briefed weekly updates to these stakeholders for over 30 weeks without interruption.

18.
medRxiv ; 2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33564778

RESUMO

We study allocation of COVID-19 vaccines to individuals based on the structural properties of their underlying social contact network. Even optimistic estimates suggest that most countries will likely take 6 to 24 months to vaccinate their citizens. These time estimates and the emergence of new viral strains urge us to find quick and effective ways to allocate the vaccines and contain the pandemic. While current approaches use combinations of age-based and occupation-based prioritizations, our strategy marks a departure from such largely aggregate vaccine allocation strategies. We propose a novel approach motivated by recent advances in (i) science of real-world networks that point to efficacy of certain vaccination strategies and (ii) digital technologies that improve our ability to estimate some of these structural properties. Using a realistic representation of a social contact network for the Commonwealth of Virginia, combined with accurate surveillance data on spatiotemporal cases and currently accepted models of within- and between-host disease dynamics, we study how a limited number of vaccine doses can be strategically distributed to individuals to reduce the overall burden of the pandemic. We show that allocation of vaccines based on individuals' degree (number of social contacts) and total social proximity time is significantly more effective than the currently used age-based allocation strategy in terms of number of infections, hospitalizations and deaths. Our results suggest that in just two months, by March 31, 2021, compared to age-based allocation, the proposed degree-based strategy can result in reducing an additional 56-110k infections, 3.2- 5.4k hospitalizations, and 700-900 deaths just in the Commonwealth of Virginia. Extrapolating these results for the entire US, this strategy can lead to 3-6 million fewer infections, 181-306k fewer hospitalizations, and 51-62k fewer deaths compared to age-based allocation. The overall strategy is robust even: (i) if the social contacts are not estimated correctly; (ii) if the vaccine efficacy is lower than expected or only a single dose is given; (iii) if there is a delay in vaccine production and deployment; and (iv) whether or not non-pharmaceutical interventions continue as vaccines are deployed. For reasons of implementability, we have used degree, which is a simple structural measure and can be easily estimated using several methods, including the digital technology available today. These results are significant, especially for resource-poor countries, where vaccines are less available, have lower efficacy, and are more slowly distributed.

19.
ArXiv ; 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32995364

RESUMO

Some of the key questions of interest during the COVID-19 pandemic (and all outbreaks) include: where did the disease start, how is it spreading, who is at risk, and how to control the spread. There are a large number of complex factors driving the spread of pandemics, and, as a result, multiple modeling techniques play an increasingly important role in shaping public policy and decision making. As different countries and regions go through phases of the pandemic, the questions and data availability also changes. Especially of interest is aligning model development and data collection to support response efforts at each stage of the pandemic. The COVID-19 pandemic has been unprecedented in terms of real-time collection and dissemination of a number of diverse datasets, ranging from disease outcomes, to mobility, behaviors, and socio-economic factors. The data sets have been critical from the perspective of disease modeling and analytics to support policymakers in real-time. In this overview article, we survey the data landscape around COVID-19, with a focus on how such datasets have aided modeling and response through different stages so far in the pandemic. We also discuss some of the current challenges and the needs that will arise as we plan our way out of the pandemic.

20.
J Indian Inst Sci ; 100(4): 901-915, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33223629

RESUMO

Some of the key questions of interest during the COVID-19 pandemic (and all outbreaks) include: where did the disease start, how is it spreading, who are at risk, and how to control the spread. There are a large number of complex factors driving the spread of pandemics, and, as a result, multiple modeling techniques play an increasingly important role in shaping public policy and decision-making. As different countries and regions go through phases of the pandemic, the questions and data availability also change. Especially of interest is aligning model development and data collection to support response efforts at each stage of the pandemic. The COVID-19 pandemic has been unprecedented in terms of real-time collection and dissemination of a number of diverse datasets, ranging from disease outcomes, to mobility, behaviors, and socio-economic factors. The data sets have been critical from the perspective of disease modeling and analytics to support policymakers in real time. In this overview article, we survey the data landscape around COVID-19, with a focus on how such datasets have aided modeling and response through different stages so far in the pandemic. We also discuss some of the current challenges and the needs that will arise as we plan our way out of the pandemic.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa