Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Mol Cell ; 83(13): 2258-2275.e11, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37369199

RESUMO

The pre-mRNA life cycle requires intron processing; yet, how intron-processing defects influence splicing and gene expression is unclear. Here, we find that TTDN1/MPLKIP, which is encoded by a gene implicated in non-photosensitive trichothiodystrophy (NP-TTD), functionally links intron lariat processing to spliceosomal function. The conserved TTDN1 C-terminal region directly binds lariat debranching enzyme DBR1, whereas its N-terminal intrinsically disordered region (IDR) binds the intron-binding complex (IBC). TTDN1 loss, or a mutated IDR, causes significant intron lariat accumulation, as well as splicing and gene expression defects, mirroring phenotypes observed in NP-TTD patient cells. A Ttdn1-deficient mouse model recapitulates intron-processing defects and certain neurodevelopmental phenotypes seen in NP-TTD. Fusing DBR1 to the TTDN1 IDR is sufficient to recruit DBR1 to the IBC and circumvents the functional requirement for TTDN1. Collectively, our findings link RNA lariat processing with splicing outcomes by revealing the molecular function of TTDN1.


Assuntos
Síndromes de Tricotiodistrofia , Animais , Camundongos , Íntrons/genética , Síndromes de Tricotiodistrofia/genética , RNA Nucleotidiltransferases/genética , Splicing de RNA
2.
Mol Cell ; 81(20): 4228-4242.e8, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34686315

RESUMO

Central to genotoxic responses is their ability to sense highly specific signals to activate the appropriate repair response. We previously reported that the activation of the ASCC-ALKBH3 repair pathway is exquisitely specific to alkylation damage in human cells. Yet the mechanistic basis for the selectivity of this pathway was not immediately obvious. Here, we demonstrate that RNA but not DNA alkylation is the initiating signal for this process. Aberrantly methylated RNA is sufficient to recruit ASCC, while an RNA dealkylase suppresses ASCC recruitment during chemical alkylation. In turn, recruitment of ASCC during alkylation damage, which is mediated by the E3 ubiquitin ligase RNF113A, suppresses transcription and R-loop formation. We further show that alkylated pre-mRNA is sufficient to activate RNF113A E3 ligase in vitro in a manner dependent on its RNA binding Zn-finger domain. Together, our work identifies an unexpected role for RNA damage in eliciting a specific response to genotoxins.


Assuntos
Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/metabolismo , Núcleo Celular/enzimologia , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Neoplasias/enzimologia , Proteínas Nucleares/metabolismo , Processamento Pós-Transcricional do RNA , RNA Neoplásico/metabolismo , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/genética , Núcleo Celular/genética , DNA Helicases/genética , Metilação de DNA , Proteínas de Ligação a DNA/genética , Células HEK293 , Células HeLa , Humanos , Metilação , Neoplasias/genética , Proteínas Nucleares/genética , Estruturas R-Loop , RNA Neoplásico/genética , Spliceossomos/genética , Spliceossomos/metabolismo , Transcrição Gênica , Ubiquitinação
3.
Mol Cell ; 77(1): 26-38.e7, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31653568

RESUMO

53BP1 activity drives genome instability and lethality in BRCA1-deficient mice by inhibiting homologous recombination (HR). The anti-recombinogenic functions of 53BP1 require phosphorylation-dependent interactions with PTIP and RIF1/shieldin effector complexes. While RIF1/shieldin blocks 5'-3' nucleolytic processing of DNA ends, it remains unclear how PTIP antagonizes HR. Here, we show that mutation of the PTIP interaction site in 53BP1 (S25A) allows sufficient DNA2-dependent end resection to rescue the lethality of BRCA1Δ11 mice, despite increasing RIF1 "end-blocking" at DNA damage sites. However, double-mutant cells fail to complete HR, as excessive shieldin activity also inhibits RNF168-mediated loading of PALB2/RAD51. As a result, BRCA1Δ1153BP1S25A mice exhibit hallmark features of HR insufficiency, including premature aging and hypersensitivity to PARPi. Disruption of shieldin or forced targeting of PALB2 to ssDNA in BRCA1D1153BP1S25A cells restores RNF168 recruitment, RAD51 nucleofilament formation, and PARPi resistance. Our study therefore reveals a critical function of shieldin post-resection that limits the loading of RAD51.


Assuntos
Recombinação Homóloga/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Envelhecimento/efeitos dos fármacos , Envelhecimento/genética , Animais , Proteína BRCA1/genética , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/genética , Instabilidade Genômica/efeitos dos fármacos , Instabilidade Genômica/genética , Recombinação Homóloga/efeitos dos fármacos , Camundongos , Mutação/efeitos dos fármacos , Mutação/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Rad51 Recombinase/genética , Ubiquitina-Proteína Ligases/genética
4.
Mol Cell ; 69(3): 505-516.e5, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29395066

RESUMO

Ubiquitination is a major mechanism that regulates numerous cellular processes, including autophagy, DNA damage signaling, and inflammation. While hundreds of ubiquitin ligases exist to conjugate ubiquitin onto substrates, approximately 100 deubiquitinases are encoded by the human genome. Thus, deubiquitinases are likely regulated by unidentified mechanisms to target distinct substrates and cellular functions. Here, we demonstrate that the deubiquitinase OTUD4, which nominally encodes a K48-specific deubiquitinase, is phosphorylated near its catalytic domain, activating a latent K63-specific deubiquitinase. Besides phosphorylation, this latter activity requires an adjacent ubiquitin-interacting motif, which increases the affinity of OTUD4 for K63-linked chains. We reveal the Toll-like receptor (TLR)-associated factor MyD88 as a target of this K63 deubiquitinase activity. Consequently, TLR-mediated activation of NF-κB is negatively regulated by OTUD4, and macrophages from Otud4-/- mice exhibit increased inflammatory signaling upon TLR stimulation. Our results reveal insights into how a deubiquitinase may modulate diverse processes through post-translational modification.


Assuntos
Fator 88 de Diferenciação Mieloide/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Animais , Enzimas Desubiquitinantes/genética , Enzimas Desubiquitinantes/metabolismo , Células HEK293 , Humanos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Proteólise , Transdução de Sinais , Receptores Toll-Like , Ubiquitina/metabolismo , Ubiquitinação
5.
Mol Cell ; 71(2): 332-342.e8, 2018 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-30017584

RESUMO

The modulator of retrovirus infection (MRI or CYREN) is a 30-kDa protein with a conserved N-terminal Ku-binding motif (KBM) and a C-terminal XLF-like motif (XLM). We show that MRI is intrinsically disordered and interacts with many DNA damage response (DDR) proteins, including the kinases ataxia telangiectasia mutated (ATM) and DNA-PKcs and the classical non-homologous end joining (cNHEJ) factors Ku70, Ku80, XRCC4, XLF, PAXX, and XRCC4. MRI forms large multimeric complexes that depend on its N and C termini and localizes to DNA double-strand breaks (DSBs), where it promotes the retention of DDR factors. Mice deficient in MRI and XLF exhibit embryonic lethality at a stage similar to those deficient in the core cNHEJ factors XRCC4 or DNA ligase IV. Moreover, MRI is required for cNHEJ-mediated DSB repair in XLF-deficient lymphocytes. We propose that MRI is an adaptor that, through multivalent interactions, increases the avidity of DDR factors to DSB-associated chromatin to promote cNHEJ.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Animais , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , DNA Ligase Dependente de ATP/genética , Reparo do DNA , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Autoantígeno Ku/genética , Camundongos
6.
Annu Rev Biochem ; 79: 155-79, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20373914

RESUMO

The importance of histone methylation in gene regulation was suggested over 40 years ago. Yet, the dynamic nature of this histone modification was recognized only recently, with the discovery of the first histone demethylase nearly five years ago. Since then, our insight into the mechanisms, structures, and macromolecular complexes of these enzymes has grown exponentially. Overall, the evidence strongly supports a key role for histone demethylases in eukaryotic transcription and other chromatin-dependent processes. Here, we examine these and related facets of histone demethylases discovered to date, focusing on their biochemistry, structure, and enzymology.


Assuntos
Histona Desmetilases/química , Histona Desmetilases/metabolismo , Histonas/metabolismo , Animais , Humanos , Metilação , Proteínas Metiltransferases/metabolismo , Transcrição Gênica
7.
J Biol Chem ; 300(6): 107368, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38750793

RESUMO

Activating signal co-integrator complex 1 (ASCC1) acts with ASCC-ALKBH3 complex in alkylation damage responses. ASCC1 uniquely combines two evolutionarily ancient domains: nucleotide-binding K-Homology (KH) (associated with regulating splicing, transcriptional, and translation) and two-histidine phosphodiesterase (PDE; associated with hydrolysis of cyclic nucleotide phosphate bonds). Germline mutations link loss of ASCC1 function to spinal muscular atrophy with congenital bone fractures 2 (SMABF2). Herein analysis of The Cancer Genome Atlas (TCGA) suggests ASCC1 RNA overexpression in certain tumors correlates with poor survival, Signatures 29 and 3 mutations, and genetic instability markers. We determined crystal structures of Alvinella pompejana (Ap) ASCC1 and Human (Hs) PDE domain revealing high-resolution details and features conserved over 500 million years of evolution. Extending our understanding of the KH domain Gly-X-X-Gly sequence motif, we define a novel structural Helix-Clasp-Helix (HCH) nucleotide binding motif and show ASCC1 sequence-specific binding to CGCG-containing RNA. The V-shaped PDE nucleotide binding channel has two His-Φ-Ser/Thr-Φ (HXT) motifs (Φ being hydrophobic) positioned to initiate cyclic phosphate bond hydrolysis. A conserved atypical active-site histidine torsion angle implies a novel PDE substrate. Flexible active site loop and arginine-rich domain linker appear regulatory. Small-angle X-ray scattering (SAXS) revealed aligned KH-PDE RNA binding sites with limited flexibility in solution. Quantitative evolutionary bioinformatic analyses of disease and cancer-associated mutations support implied functional roles for RNA binding, phosphodiesterase activity, and regulation. Collective results inform ASCC1's roles in transactivation and alkylation damage responses, its targeting by structure-based inhibitors, and how ASCC1 mutations may impact inherited disease and cancer.


Assuntos
Diester Fosfórico Hidrolases , Humanos , Biologia Computacional/métodos , Cristalografia por Raios X , Diester Fosfórico Hidrolases/metabolismo , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/genética , Motivos de Ligação ao RNA/genética
8.
EMBO Rep ; 24(1): e55429, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36382770

RESUMO

Developing B cells generate DNA double-stranded breaks (DSBs) to assemble immunoglobulin receptor (Ig) genes necessary for the expression of a mature B cell receptor. These physiologic DSBs are made by the RAG endonuclease, which is comprised of the RAG1 and RAG2 proteins. In pre-B cells, RAG-mediated DSBs activate the ATM kinase to coordinate canonical and non-canonical DNA damage responses (DDR) that trigger DSB repair and B cell developmental signals, respectively. Whether this broad cellular response is distinctive to RAG DSBs is poorly understood. To delineate the factors that direct DDR signaling in B cells, we express a tetracycline-inducible Cas9 nuclease in Rag1-deficient pre-B cells. Both RAG- and Cas9-mediated DSBs at Ig genes activate canonical DDR. In contrast, RAG DSBs, but not Cas9 DSBs, induce the non-canonical DDR-dependent developmental program. This unique response to RAG DSBs is, in part, regulated by non-core regions of RAG1. Thus, B cells trigger distinct cellular responses to RAG DSBs through unique properties of the RAG endonuclease that promotes activation of B cell developmental programs.


Assuntos
Quebras de DNA de Cadeia Dupla , Proteínas de Homeodomínio , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Linfócitos B/metabolismo , Transdução de Sinais , Células Precursoras de Linfócitos B , Dano ao DNA
9.
Crit Rev Biochem Mol Biol ; 56(2): 125-136, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33430640

RESUMO

DNA damaging agents have been a cornerstone of cancer therapy for nearly a century. The discovery of many of these chemicals, particularly the alkylating agents, are deeply entwined with the development of poisonous materials originally intended for use in warfare. Over the last decades, their anti-proliferative effects have focused on the specific mechanisms by which they damage DNA, and the factors involved in the repair of such damage. Due to the variety of aberrant adducts created even for the simplest alkylating agents, numerous pathways of repair are engaged as a defense against this damage. More recent work has underscored the role of RNA damage in the cellular response to these agents, although the understanding of their role in relation to established DNA repair pathways is still in its infancy. In this review, we discuss the chemistry of alkylating agents, the numerous ways in which they damage nucleic acids, as well as the specific DNA and RNA repair pathways which are engaged to counter their effects.


Assuntos
Dano ao DNA , DNA/genética , RNA/genética , Alquilantes/toxicidade , Alquilação/efeitos dos fármacos , Animais , DNA/química , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Humanos , RNA/química
10.
J Biol Chem ; 298(2): 101545, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34971705

RESUMO

Alkylation of DNA and RNA is a potentially toxic lesion that can result in mutations and even cell death. In response to alkylation damage, K63-linked polyubiquitin chains are assembled that localize the Alpha-ketoglutarate-dependent dioxygenase alkB homolog 3-Activating Signal Cointegrator 1 Complex Subunit (ASCC) repair complex to damage sites in the nucleus. The protein ASCC2, a subunit of the ASCC complex, selectively binds K63-linked polyubiquitin chains via its coupling of ubiquitin conjugation to ER degradation (CUE) domain. The basis for polyubiquitin-binding specificity was unclear, because CUE domains in other proteins typically bind a single ubiquitin and do not discriminate among different polyubiquitin linkage types. We report here that the ASCC2 CUE domain selectively binds K63-linked diubiquitin by contacting both the distal and proximal ubiquitin. The ASCC2 CUE domain binds the distal ubiquitin in a manner similar to that reported for other CUE domains bound to a single ubiquitin, whereas the contacts with the proximal ubiquitin are unique to ASCC2. Residues in the N-terminal portion of the ASCC2 α1 helix contribute to the binding interaction with the proximal ubiquitin of K63-linked diubiquitin. Mutation of residues within the N-terminal portion of the ASCC2 α1 helix decreases ASCC2 recruitment in response to DNA alkylation, supporting the functional significance of these interactions during the alkylation damage response. Our study reveals the versatility of CUE domains in ubiquitin recognition.


Assuntos
Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato , Reparo do DNA , Proteínas Nucleares , Poliubiquitina , Ubiquitina , Ubiquitinas , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/genética , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/metabolismo , DNA/metabolismo , Modelos Moleculares , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Poliubiquitina/genética , Poliubiquitina/metabolismo , Ligação Proteica , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo
11.
Nature ; 551(7680): 389-393, 2017 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-29144457

RESUMO

DNA repair is essential to prevent the cytotoxic or mutagenic effects of various types of DNA lesions, which are sensed by distinct pathways to recruit repair factors specific to the damage type. Although biochemical mechanisms for repairing several forms of genomic insults are well understood, the upstream signalling pathways that trigger repair are established for only certain types of damage, such as double-stranded breaks and interstrand crosslinks. Understanding the upstream signalling events that mediate recognition and repair of DNA alkylation damage is particularly important, since alkylation chemotherapy is one of the most widely used systemic modalities for cancer treatment and because environmental chemicals may trigger DNA alkylation. Here we demonstrate that human cells have a previously unrecognized signalling mechanism for sensing damage induced by alkylation. We find that the alkylation repair complex ASCC (activating signal cointegrator complex) relocalizes to distinct nuclear foci specifically upon exposure of cells to alkylating agents. These foci associate with alkylated nucleotides, and coincide spatially with elongating RNA polymerase II and splicing components. Proper recruitment of the repair complex requires recognition of K63-linked polyubiquitin by the CUE (coupling of ubiquitin conjugation to ER degradation) domain of the subunit ASCC2. Loss of this subunit impedes alkylation adduct repair kinetics and increases sensitivity to alkylating agents, but not other forms of DNA damage. We identify RING finger protein 113A (RNF113A) as the E3 ligase responsible for upstream ubiquitin signalling in the ASCC pathway. Cells from patients with X-linked trichothiodystrophy, which harbour a mutation in RNF113A, are defective in ASCC foci formation and are hypersensitive to alkylating agents. Together, our work reveals a previously unrecognized ubiquitin-dependent pathway induced specifically to repair alkylation damage, shedding light on the molecular mechanism of X-linked trichothiodystrophy.


Assuntos
Enzimas AlkB/metabolismo , Adutos de DNA/metabolismo , Reparo do DNA , Complexos Multiproteicos/metabolismo , Transdução de Sinais , Síndromes de Tricotiodistrofia/genética , Ubiquitina/metabolismo , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/metabolismo , Alquilantes/farmacologia , Alquilação , Sequência de Aminoácidos , Adutos de DNA/química , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Retículo Endoplasmático/metabolismo , Genes Ligados ao Cromossomo X , Humanos , Cinética , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Poliubiquitina/metabolismo , RNA Polimerase II/metabolismo , Splicing de RNA , Síndromes de Tricotiodistrofia/metabolismo , Síndromes de Tricotiodistrofia/patologia , Ubiquitinação
12.
Nucleic Acids Res ; 49(6): 3033-3047, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33693881

RESUMO

Accurate duplication of chromosomal DNA is essential for the transmission of genetic information. The DNA replication fork encounters template lesions, physical barriers, transcriptional machinery, and topological barriers that challenge the faithful completion of the replication process. The flexibility of replisomes coupled with tolerance and repair mechanisms counteract these replication fork obstacles. The cell possesses several universal mechanisms that may be activated in response to various replication fork impediments, but it has also evolved ways to counter specific obstacles. In this review, we will discuss these general and specific strategies to counteract different forms of replication associated damage to maintain genomic stability.


Assuntos
Dano ao DNA , Reparo do DNA , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Complexos Multienzimáticos/metabolismo , Estruturas R-Loop , Ribonucleotídeos/metabolismo
13.
Trends Biochem Sci ; 42(3): 206-218, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27816326

RESUMO

Alkylation chemotherapy is one of the most widely used systemic therapies for cancer. While somewhat effective, clinical responses and toxicities of these agents are highly variable. A major contributing factor for this variability is the numerous distinct lesions that are created upon alkylation damage. These adducts activate multiple repair pathways. There is mounting evidence that the individual pathways function cooperatively, suggesting that coordinated regulation of alkylation repair is critical to prevent toxicity. Furthermore, some alkylating agents produce adducts that overlap with newly discovered methylation marks, making it difficult to distinguish between bona fide damaged bases and so-called 'epigenetic' adducts. Here, we discuss new efforts aimed at deciphering the mechanisms that regulate these repair pathways, emphasizing their implications for cancer chemotherapy.


Assuntos
Dano ao DNA , Reparo do DNA , DNA de Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Alquilação/efeitos dos fármacos , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , DNA de Neoplasias/efeitos dos fármacos , Humanos , Neoplasias/genética , Neoplasias/metabolismo
14.
J Transl Med ; 19(1): 287, 2021 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-34217309

RESUMO

BACKGROUND: Reversible enzymatic methylation of mammalian mRNA is widespread and serves crucial regulatory functions, but little is known to what degree chemical alkylators mediate overlapping modifications and whether cells distinguish aberrant from canonical methylations. METHODS: Here we use quantitative mass spectrometry to determine the fate of chemically induced methylbases in the mRNA of human cells. Concomitant alteration in the mRNA binding proteome was analyzed by SILAC mass spectrometry. RESULTS: MMS induced prominent direct mRNA methylations that were chemically identical to endogenous methylbases. Transient loss of 40S ribosomal proteins from isolated mRNA suggests that aberrant methylbases mediate arrested translational initiation and potentially also no-go decay of the affected mRNA. Four proteins (ASCC3, YTHDC2, TRIM25 and GEMIN5) displayed increased mRNA binding after MMS treatment. ASCC3 is a binding partner of the DNA/RNA demethylase ALKBH3 and was recently shown to promote disassembly of collided ribosomes as part of the ribosome quality control (RQC) trigger complex. We find that ASCC3-deficient cells display delayed removal of MMS-induced 1-methyladenosine (m1A) and 3-methylcytosine (m3C) from mRNA and impaired formation of MMS-induced P-bodies. CONCLUSIONS: Our findings conform to a model in which ASCC3-mediated disassembly of collided ribosomes allows demethylation of aberrant m1A and m3C by ALKBH3. Our findings constitute first evidence of selective sanitation of aberrant mRNA methylbases over their endogenous counterparts and warrant further studies on RNA-mediated effects of chemical alkylators commonly used in the clinic.


Assuntos
Citosina , Ribossomos , Adenosina/análogos & derivados , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato , Animais , Citosina/análogos & derivados , DNA Helicases , Humanos , RNA Helicases , RNA Mensageiro/genética , Fatores de Transcrição , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases
15.
Nucleic Acids Res ; 47(3): 1294-1310, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29917110

RESUMO

Pds5 is required for sister chromatid cohesion, and somewhat paradoxically, to remove cohesin from chromosomes. We found that Pds5 plays a critical role during DNA replication that is distinct from its previously known functions. Loss of Pds5 hinders replication fork progression in unperturbed human and mouse cells. Inhibition of MRE11 nuclease activity restores fork progression, suggesting that Pds5 protects forks from MRE11-activity. Loss of Pds5 also leads to double-strand breaks, which are again reduced by MRE11 inhibition. The replication function of Pds5 is independent of its previously reported interaction with BRCA2. Unlike Pds5, BRCA2 protects forks from nucleolytic degradation only in the presence of genotoxic stress. Moreover, our iPOND analysis shows that the loading of Pds5 and other cohesion factors on replication forks is not affected by the BRCA2 status. Pds5 role in DNA replication is shared by the other cohesin-removal factor Wapl, but not by the cohesin complex component Rad21. Interestingly, depletion of Rad21 in a Pds5-deficient background rescues the phenotype observed upon Pds5 depletion alone. These findings support a model where loss of either component of the cohesin releasin complex perturbs cohesin dynamics on replication forks, hindering fork progression and promoting MRE11-dependent fork slowing.


Assuntos
Replicação do DNA/genética , Proteína Homóloga a MRE11/genética , Proteínas Nucleares/genética , Fosfoproteínas/genética , Proteína BRCA2/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Cromátides/genética , Proteínas Cromossômicas não Histona/genética , Dano ao DNA/genética , Proteínas de Ligação a DNA , Desoxirribonucleases/genética , Humanos , Troca de Cromátide Irmã/genética , Coesinas
16.
Gynecol Oncol ; 159(3): 877-886, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32967790

RESUMO

Cancers with deficiencies in homologous recombination-mediated DNA repair (HRR) demonstrate improved clinical outcomes and increased survival. Approximately 50% of high-grade serous ovarian cancers (HGSOC) exhibit homologous recombination deficiency (HRD). HRD can be caused by germline or somatic mutations of genes involved in the HR pathway. Given platinum-based chemotherapy and poly (ADP-ribose) polymerase inhibitors (PARPis) are used in HGSOC, double-strand breaks (DSBs) are common. Unrepaired DSBs are toxic to cells as genomic instability ensues and cells eventually die. Thus, tumor cells with DSBs utilize the high-fidelity HRR as one of the central pathways for repair. In tumors that have HRD, an alternate pathway such as non-homologous end-joining (NHEJ) is used and leads to error-prone repair. To date, methods for clinical detection of homologous recombination deficiency (HRD) are limited to genomic changes of HRR genes and genomic mutation patterns resulting from HRD genes involved in HR-mediated DNA repair. However, these tests detect genomic scars that might not always correlate well with PARP inhibitor or platinum sensitivity in the current state. Therefore, a functional HRD assay should be able to more accurately predict tumor response in real-time. RAD51 foci formation has been used as a functional assay to define HRD and closely correlates with chemotherapy and PARPi sensitivity. The inability to form RAD51 foci is a common feature of HRD. DNA damage can also cause transient slowing or stalling of replication forks defined as replication stress. Replication fork stalling can lead to fork degradation and decreased cell viability if forks do not resume DNA synthesis. Fork degradation has been found to lead to chemosensitivity in BRCA-deficient tumors. To determine this fork degradation phenotype, replication fork/DNA fiber assays are utilized. This review will highlight functional assays for HRD in the context of translating these to real-time clinical assays.


Assuntos
Carcinoma Epitelial do Ovário/genética , Testes Genéticos/métodos , Neoplasias Ovarianas/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Reparo de DNA por Recombinação/genética , Proteína BRCA1/genética , Proteína BRCA2/genética , Carcinoma Epitelial do Ovário/diagnóstico , Carcinoma Epitelial do Ovário/tratamento farmacológico , Carcinoma Epitelial do Ovário/mortalidade , Replicação do DNA/genética , Feminino , Testes Genéticos/tendências , Humanos , Imuno-Histoquímica/métodos , Imuno-Histoquímica/tendências , Mutação , Gradação de Tumores , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/mortalidade , Ovário/patologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Rad51 Recombinase/genética , Reparo de DNA por Recombinação/efeitos dos fármacos , Fatores de Tempo
17.
Biochemistry ; 58(5): 312-329, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30346748

RESUMO

An emerging molecular understanding of RNA alkylation and its removal is transforming our knowledge of RNA biology and its interplay with cancer chemotherapy responses. DNA modifications are known to perform critical functions depending on the genome template, including gene expression, DNA replication timing, and DNA damage protection, yet current results suggest that the chemical diversity of DNA modifications pales in comparison to those on RNA. More than 150 RNA modifications have been identified to date, and their complete functional implications are still being unveiled. These include intrinsic roles such as proper processing and RNA maturation; emerging evidence has furthermore uncovered RNA modification "readers", seemingly analogous to those identified for histone modifications. These modification recognition factors may regulate mRNA stability, localization, and interaction with translation machinery, affecting gene expression. Not surprisingly, tumors differentially modulate factors involved in expressing these marks, contributing to both tumorigenesis and responses to alkylating chemotherapy. Here we describe the current understanding of RNA modifications and their removal, with a focus primarily on methylation and alkylation as functionally relevant changes to the transcriptome. Intriguingly, some of the same RNA modifications elicited by physiological processes are also produced by alkylating agents, thus blurring the lines between what is a physiological mark and a damage-induced modification. Furthermore, we find that a high level of gene expression of enzymes with RNA dealkylation activity is a sensitive readout for poor survival in four different cancer types, underscoring the likely importance of examining RNA dealkylation mechanisms to cancer biology and for cancer treatment and prognosis.


Assuntos
Epigênese Genética , Neoplasias/patologia , Processamento Pós-Transcricional do RNA , RNA/química , RNA/genética , Alquilação , Humanos , Metilação , Neoplasias/genética
18.
J Biol Chem ; 293(35): 13524-13533, 2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-29997253

RESUMO

Multiple DNA damage response (DDR) pathways have evolved to sense the presence of damage and recruit the proper repair factors. We recently reported a signaling pathway induced upon alkylation damage to recruit the AlkB homolog 3, α-ketoglutarate-dependent dioxygenase (ALKBH3)-activating signal cointegrator 1 complex subunit 3 (ASCC3) dealkylase-helicase repair complex. As in other DDR pathways, the recruitment of these repair factors is mediated through a ubiquitin-dependent mechanism. However, the machinery that coordinates the proper assembly of this repair complex and controls its recruitment is still poorly defined. Here, we demonstrate that the ASCC1 accessory subunit is important for the regulation of ASCC complex function. ASCC1 interacts with the ASCC complex through the ASCC3 helicase subunit. We find that ASCC1 is present at nuclear speckle foci prior to damage, but leaves the foci in response to alkylation. Strikingly, ASCC1 loss significantly increases ASCC3 foci formation during alkylation damage, yet most of these foci lack ASCC2. These results suggest that ASCC1 coordinates the proper recruitment of the ASCC complex during alkylation, a function that appears to depend on a putative RNA-binding motif near the ASCC1 C terminus. Consistent with its role in alkylation damage signaling and repair, ASCC1 knockout through a CRISPR/Cas9 approach results in alkylation damage sensitivity in a manner epistatic with ASCC3. Together, our results identify a critical regulator of the ALKBH3-ASCC alkylation damage signaling pathway and suggest a potential role for RNA-interacting domains in the alkylation damage response.


Assuntos
DNA Helicases/metabolismo , Proteínas Nucleares/metabolismo , Mapas de Interação de Proteínas , Fatores de Transcrição/metabolismo , Alquilação , Sequência de Aminoácidos , Linhagem Celular , Dano ao DNA , Desmetilação do DNA , Reparo do DNA , Humanos , Modelos Moleculares , Domínios Proteicos , RNA/metabolismo , RNA Ligase (ATP)/química , RNA Ligase (ATP)/metabolismo , Fatores de Transcrição/química
19.
EMBO J ; 34(12): 1687-703, 2015 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-25944111

RESUMO

Repair of DNA alkylation damage is critical for genomic stability and involves multiple conserved enzymatic pathways. Alkylation damage resistance, which is critical in cancer chemotherapy, depends on the overexpression of alkylation repair proteins. However, the mechanisms responsible for this upregulation are unknown. Here, we show that an OTU domain deubiquitinase, OTUD4, is a positive regulator of ALKBH2 and ALKBH3, two DNA demethylases critical for alkylation repair. Remarkably, we find that OTUD4 catalytic activity is completely dispensable for this function. Rather, OTUD4 is a scaffold for USP7 and USP9X, two deubiquitinases that act directly on the AlkB proteins. Moreover, we show that loss of OTUD4, USP7, or USP9X in tumor cells makes them significantly more sensitive to alkylating agents. Taken together, this work reveals a novel, noncanonical mechanism by which an OTU family deubiquitinase regulates its substrates, and provides multiple new targets for alkylation chemotherapy sensitization of tumors.


Assuntos
Alquilação/fisiologia , Dano ao DNA/fisiologia , Enzimas Reparadoras do DNA/metabolismo , Reparo do DNA/fisiologia , Dioxigenases/metabolismo , Regulação da Expressão Gênica/fisiologia , Proteases Específicas de Ubiquitina/metabolismo , Homólogo AlkB 2 da Dioxigenase Dependente de alfa-Cetoglutarato , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato , Alquilação/genética , Western Blotting , Dano ao DNA/genética , Reparo do DNA/genética , Células HEK293 , Humanos , Imunoprecipitação , Microscopia de Fluorescência , Modelos Biológicos , Espectrometria de Massas em Tandem
20.
Mol Cell ; 44(3): 373-84, 2011 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-22055184

RESUMO

Demethylation by the AlkB dioxygenases represents an important mechanism for repair of N-alkylated nucleotides. However, little is known about their functions in mammalian cells. We report the purification of the ALKBH3 complex and demonstrate its association with the activating signal cointegrator complex (ASCC). ALKBH3 is overexpressed in various cancers, and both ALKBH3 and ASCC are important for alkylation damage resistance in these tumor cell lines. ASCC3, the largest subunit of ASCC, encodes a 3'-5' DNA helicase, whose activity is crucial for the generation of single-stranded DNA upon which ALKBH3 preferentially functions for dealkylation. In cell lines that are dependent on ALKBH3 and ASCC3 for alkylation damage resistance, loss of ALKBH3 or ASCC3 leads to increased 3-methylcytosine and reduced cell proliferation, which correlates with pH2A.X and 53BP1 foci formation. Our data provide a molecular mechanism by which ALKBH3 collaborates with ASCC to maintain genomic integrity in a cell-type specific manner.


Assuntos
Proliferação de Células , DNA Helicases/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Reparo do DNA , Dioxigenases/metabolismo , Neoplasias da Próstata/enzimologia , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato , Alquilação , Animais , Antineoplásicos Alquilantes/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , DNA Helicases/genética , Enzimas Reparadoras do DNA/genética , Dioxigenases/genética , Relação Dose-Resposta a Droga , Células HEK293 , Histonas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Metanossulfonato de Metila , Camundongos , Camundongos Endogâmicos NOD , Mutação , Transplante de Neoplasias , Fosforilação , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Interferência de RNA , Fatores de Tempo , Transfecção , Carga Tumoral , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa