Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Mol Carcinog ; 58(9): 1571-1580, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31286584

RESUMO

Overexpression of ΔNp63α, a member of the p53/p63/p73 family of transcription factors, is a molecular attribute of human squamous cancers of the head and neck, lung and skin. The TP63 gene plays important roles in epidermal morphogenesis and homeostasis, regulating diverse biological processes including epidermal fate decisions and keratinocyte proliferation and survival. When overexpressed experimentally in primary mouse keratinocytes, ΔNp63α maintains a basal cell phenotype including the loss of normal calcium-mediated growth arrest, at least in part through the activation and enhanced nuclear accumulation of the c-rel subunit of NF-κB (Nuclear Factor-kappa B). Initially identified for its role in the immune system and hematopoietic cancers, c-Rel has increasingly been associated with solid tumors and other pathologies. ΔNp63α and c-Rel have been shown to be associated in the nuclei of ΔNp63α overexpressing human squamous carcinoma cells. Together, these transcription factors cooperate in the transcription of genes regulating intrinsic keratinocyte functions, as well as the elaboration of factors that influence the tumor microenvironment (TME). This review provides an overview of the roles of ΔNp63α and c-Rel in normal epidermal homeostasis and elaborates on how these pathways may intersect in pathological conditions such as cancer and the associated TME.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Células Epiteliais/metabolismo , Homeostase/fisiologia , NF-kappa B/metabolismo , Transdução de Sinais/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Animais , Carcinoma de Células Escamosas/patologia , Células Epiteliais/patologia , Humanos , Microambiente Tumoral/fisiologia
2.
Int J Mol Sci ; 20(14)2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31340447

RESUMO

The p63 gene is a member of the p53/p63/p73 family of transcription factors and plays a critical role in development and homeostasis of squamous epithelium. p63 is transcribed as multiple isoforms; ΔNp63α, the predominant p63 isoform in stratified squamous epithelium, is localized to the basal cells and is overexpressed in squamous cell cancers of multiple organ sites, including skin, head and neck, and lung. Further, p63 is considered a stem cell marker, and within the epidermis, ΔNp63α directs lineage commitment. ΔNp63α has been implicated in numerous processes of skin biology that impact normal epidermal homeostasis and can contribute to squamous cancer pathogenesis by supporting proliferation and survival with roles in blocking terminal differentiation, apoptosis, and senescence, and influencing adhesion and migration. ΔNp63α overexpression may also influence the tissue microenvironment through remodeling of the extracellular matrix and vasculature, as well as by enhancing cytokine and chemokine secretion to recruit pro-inflammatory infiltrate. This review focuses on the role of ΔNp63α in normal epidermal biology and how dysregulation can contribute to cutaneous squamous cancer development, drawing from knowledge also gained by squamous cancers from other organ sites that share p63 overexpression as a defining feature.


Assuntos
Carcinoma de Células Escamosas/genética , Células Epiteliais/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Neoplasias Pulmonares/genética , Neoplasias Cutâneas/genética , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Adesão Celular , Linhagem da Célula/genética , Movimento Celular , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Epiderme/metabolismo , Epiderme/patologia , Células Epiteliais/patologia , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Transdução de Sinais , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo
3.
J Urol ; 193(2): 722-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25167991

RESUMO

PURPOSE: Estrogens are important in prostate growth and have a role in benign prostatic hyperplasia. However, to our knowledge no current therapy directly targets estrogen action. Estrogens act primarily via estrogen receptors α and ß. In a mouse model we evaluated the relative contribution of these receptors to bladder complications of benign prostatic hyperplasia. We also evaluated the prevention of these bladder complications using the selective estrogen receptor modulators raloxifene and tamoxifen (estrogen receptor-α selective antagonists), and R,R-THC (estrogen receptor-ß selective antagonist). MATERIALS AND METHODS: Adult male C57bl/6 mice received implants of 25 mg testosterone and 2.5 mg 17ß-estradiol slow release pellets. Untreated controls underwent sham surgery. We evaluated the contributions of the estrogen receptor subtypes in ERαKO and ERßKO mice compared to their respective wild-type litter mates. Wild-type mice treated with testosterone plus 17ß-estradiol were compared to mice treated with testosterone plus 17ß-estradiol and 25 mg selective estrogen receptor modulators to evaluate the prevention of benign prostatic hyperplasia complications by selective estrogen receptor modulators. RESULTS: Large bladders with urinary retention developed in ERαWT and ERßWT litter mates treated with testosterone plus 17ß-estradiol but such bladders did not develop in ERαKO mice treated with testosterone plus 17ß-estradiol. ERßKO mice treated with testosterone plus 17ß-estradiol had large bladders with urinary retention and increased bladder mass. Cotreatment with the estrogen receptor-α antagonist raloxifene resulted in decreased bladder mass compared to that in wild-type mice treated with testosterone plus 17ß-estradiol. Bladders in mice treated with the estrogen receptor-ß antagonist R,R-THC were similar to those in testosterone plus 17ß-estradiol treated mice. CONCLUSIONS: Estrogen receptor-α but not ß is a key mediator of bladder complications of benign prostatic hyperplasia and a potential target for future therapies.


Assuntos
Receptor alfa de Estrogênio , Receptor beta de Estrogênio , Hiperplasia Prostática/complicações , Cloridrato de Raloxifeno/farmacologia , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Tamoxifeno/farmacologia , Doenças da Bexiga Urinária , Animais , Receptor alfa de Estrogênio/efeitos dos fármacos , Receptor alfa de Estrogênio/fisiologia , Receptor beta de Estrogênio/efeitos dos fármacos , Receptor beta de Estrogênio/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Cloridrato de Raloxifeno/uso terapêutico , Moduladores Seletivos de Receptor Estrogênico/uso terapêutico , Tamoxifeno/uso terapêutico , Doenças da Bexiga Urinária/tratamento farmacológico , Doenças da Bexiga Urinária/etiologia
4.
Cell Chem Biol ; 29(3): 490-501.e4, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35108506

RESUMO

Castration-resistant prostate cancer (CRPC) is associated with an increased reliance on heat shock protein 70 (HSP70), but it is not clear what other protein homeostasis (proteostasis) factors might be involved. To address this question, we performed functional and synthetic lethal screens in four prostate cancer cell lines. These screens confirmed key roles for HSP70, HSP90, and their co-chaperones, but also suggested that the mitochondrial chaperone, HSP60/HSPD1, is selectively required in CRPC cell lines. Knockdown of HSP60 does not impact the stability of androgen receptor (AR) or its variants; rather, it is associated with loss of mitochondrial spare respiratory capacity, partly owing to increased proton leakage. Finally, transcriptional data revealed a correlation between HSP60 levels and poor survival of prostate cancer patients. These findings suggest that re-wiring of the proteostasis network is associated with CRPC, creating selective vulnerabilities that might be targeted to treat the disease.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Linhagem Celular Tumoral , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Masculino , Chaperonas Moleculares/metabolismo , Neoplasias de Próstata Resistentes à Castração/genética , Proteostase , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo
5.
Cell Rep ; 30(6): 1798-1810.e4, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32049011

RESUMO

The reliance of many cancers on aerobic glycolysis has stimulated efforts to develop lactate dehydrogenase (LDH) inhibitors. However, despite significant efforts, LDH inhibitors (LDHi) with sufficient specificity and in vivo activity to determine whether LDH is a feasible drug target are lacking. We describe an LDHi with potent, on-target, in vivo activity. Using hyperpolarized magnetic resonance spectroscopic imaging (HP-MRSI), we demonstrate in vivo LDH inhibition in two glycolytic cancer models, MIA PaCa-2 and HT29, and we correlate depth and duration of LDH inhibition with direct anti-tumor activity. HP-MRSI also reveals a metabolic rewiring that occurs in vivo within 30 min of LDH inhibition, wherein pyruvate in a tumor is redirected toward mitochondrial metabolism. Using HP-MRSI, we show that inhibition of mitochondrial complex 1 rapidly redirects tumor pyruvate toward lactate. Inhibition of both mitochondrial complex 1 and LDH suppresses metabolic plasticity, causing metabolic quiescence in vitro and tumor growth inhibition in vivo.


Assuntos
Quimioterapia Combinada/métodos , L-Lactato Desidrogenase/antagonistas & inibidores , Neoplasias/imunologia , Animais , Humanos , Camundongos , Neoplasias/tratamento farmacológico
6.
J Appl Physiol (1985) ; 106(1): 20-8, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19023020

RESUMO

Administration of Na(+)/H(+) exchange isoform-1 (NHE-1) inhibitors before ischemia has been shown to attenuate myocardial infarction in several animal models of ischemia-reperfusion injury. However, controversy still exists as to the efficacy of NHE-1 inhibitors in protection of myocardial infarction when administered at the onset of reperfusion. Furthermore, the efficacy of NHE-1 inhibition in protection of skeletal muscle from infarction (necrosis) has not been studied. This information has potential clinical applications in prevention or salvage of skeletal muscle from ischemia-reperfusion injury in elective and trauma reconstructive surgery. The objective of this research project is to test our hypothesis that the NHE-1 inhibitor cariporide is effective in protection of skeletal muscle from infarction when administered at the onset of sustained ischemia or reperfusion and to study the mechanism of action of cariporide. In our studies, we observed that intravenous administration of cariporide 10 min before ischemia (1 or 3 mg/kg) or reperfusion (3 mg/kg) significantly reduced infarction in pig latissimus dorsi muscle flaps compared with the control, when these muscle flaps were subjected to 4 h of ischemia and 48 h of reperfusion (P < 0.05; n = 5 pigs/group). Both preischemic and postischemic cariporide treatment (3 mg/kg) induced a significant decrease in muscle myeloperoxidase activity and mitochondrial-free Ca(2+) content and a significant increase in muscle ATP content within 2 h of reperfusion (P < 0.05; n = 4 pigs/group). Preischemic and postischemic cariporide treatment (3 mg/kg) also significantly inhibited muscle NHE-1 protein expression within 2 h of reperfusion after 4 h of ischemia, compared with the control (P < 0.05; n = 3 pigs/group). These observations support our hypothesis that cariporide attenuates skeletal muscle infarction when administered at the onset of ischemia or reperfusion, and the mechanism involves attenuation of neutrophil accumulation and mitochondrial-free Ca(2+) overload and preservation of ATP synthesis in the early stage of reperfusion.


Assuntos
Inibidores Enzimáticos/farmacologia , Guanidinas/farmacologia , Infarto/prevenção & controle , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/efeitos dos fármacos , Traumatismo por Reperfusão/prevenção & controle , Trocadores de Sódio-Hidrogênio/antagonistas & inibidores , Sulfonas/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Castração , Modelos Animais de Doenças , Esquema de Medicação , Inibidores Enzimáticos/administração & dosagem , Guanidinas/administração & dosagem , Infarto/enzimologia , Infarto/patologia , Injeções Intravenosas , Mitocôndrias Musculares/efeitos dos fármacos , Mitocôndrias Musculares/enzimologia , Músculo Esquelético/enzimologia , Músculo Esquelético/patologia , Músculo Esquelético/cirurgia , Necrose , Infiltração de Neutrófilos/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Neutrófilos/enzimologia , Peroxidase/metabolismo , Traumatismo por Reperfusão/enzimologia , Traumatismo por Reperfusão/patologia , Trocadores de Sódio-Hidrogênio/metabolismo , Sulfonas/administração & dosagem , Retalhos Cirúrgicos , Suínos , Fatores de Tempo
7.
Philos Trans R Soc Lond B Biol Sci ; 373(1738)2018 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-29203712

RESUMO

The molecular chaperone heat shock protein 90 (Hsp90) facilitates metastable protein maturation, stabilization of aggregation-prone proteins, quality control of misfolded proteins and assists in keeping proteins in activation-competent conformations. Proteins that rely on Hsp90 for function are delivered to Hsp90 utilizing a co-chaperone-assisted cycle. Co-chaperones play a role in client transfer to Hsp90, Hsp90 ATPase regulation and stabilization of various Hsp90 conformational states. Many of the proteins chaperoned by Hsp90 (Hsp90 clients) are essential for the progression of various diseases, including cancer, Alzheimer's disease and other neurodegenerative diseases, as well as viral and bacterial infections. Given the importance of these clients in different diseases and their dynamic interplay with the chaperone machinery, it has been suggested that targeting Hsp90 and its respective co-chaperones may be an effective method for combating a large range of illnesses.This article is part of the theme issue 'Heat shock proteins as modulators and therapeutic targets of chronic disease: an integrated perspective'.


Assuntos
Proteínas de Choque Térmico HSP90/genética , Mamíferos/genética , Animais , Proteínas de Choque Térmico HSP90/metabolismo , Humanos
8.
Neuroreport ; 29(2): 79-83, 2018 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-29189634

RESUMO

Trait anxiety has been shown to cause significant impairments on attentional tasks. Current research has identified alpha band frequency differences between low-trait and high-trait anxious individuals. Here, we further investigated the underlying alpha band frequency differences between low-trait and high-trait anxious individuals during their resting state and the completion of an inhibition executive functioning task. Using human participants and quantitative electroencephalographic recordings, we measured alpha band frequency in individuals both high and low in trait anxiety during their resting state, and while they completed an Eriksen Flanker Task. Results indicated that high-trait anxious individuals exhibit a desynchronization in alpha band frequency from a resting state to when they complete the Eriksen Flanker Task. This suggests that high-trait anxious individuals maintain fewer attentional resources at rest and must martial resources for task performance as compared with low-trait anxious individuals, who appear to maintain stable cognitive resources between rest and task performance. These findings add to the cognitive neuroscience literature surrounding the role of alpha band frequency in low-trait and high-trait anxious individuals.


Assuntos
Ritmo alfa , Ansiedade/fisiopatologia , Encéfalo/fisiologia , Personalidade/fisiologia , Ansiedade/psicologia , Atenção/fisiologia , Eletroencefalografia , Função Executiva/fisiologia , Feminino , Humanos , Inibição Psicológica , Masculino , Testes Neuropsicológicos , Testes de Personalidade , Descanso , Adulto Jovem
9.
Nat Commun ; 9(1): 265, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29343704

RESUMO

During the Hsp90-mediated chaperoning of protein kinases, the core components of the machinery, Hsp90 and the cochaperone Cdc37, recycle between different phosphorylation states that regulate progression of the chaperone cycle. We show that Cdc37 phosphorylation at Y298 results in partial unfolding of the C-terminal domain and the population of folding intermediates. Unfolding facilitates Hsp90 phosphorylation at Y197 by unmasking a phosphopeptide sequence, which serves as a docking site to recruit non-receptor tyrosine kinases to the chaperone complex via their SH2 domains. In turn, Hsp90 phosphorylation at Y197 specifically regulates its interaction with Cdc37 and thus affects the chaperoning of only protein kinase clients. In summary, we find that by providing client class specificity, Hsp90 cochaperones such as Cdc37 do not merely assist in client recruitment but also shape the post-translational modification landscape of Hsp90 in a client class-specific manner.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Chaperoninas/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas Tirosina Quinases/metabolismo , Humanos , Fosforilação , Dobramento de Proteína , Domínios de Homologia de src
10.
J Med Chem ; 61(14): 6163-6177, 2018 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-29953808

RESUMO

Cancer cells rely on the chaperone heat shock protein 70 (Hsp70) for survival and proliferation. Recently, benzothiazole rhodacyanines have been shown to bind an allosteric site on Hsp70, interrupting its binding to nucleotide-exchange factors (NEFs) and promoting cell death in breast cancer cell lines. However, proof-of-concept molecules, such as JG-98, have relatively modest potency (EC50 ≈ 0.7-0.4 µM) and are rapidly metabolized in animals. Here, we explored this chemical series through structure- and property-based design of ∼300 analogs, showing that the most potent had >10-fold improved EC50 values (∼0.05 to 0.03 µM) against two breast cancer cells. Biomarkers and whole genome CRISPRi screens confirmed members of the Hsp70 family as cellular targets. On the basis of these results, JG-231 was found to reduce tumor burden in an MDA-MB-231 xenograft model (4 mg/kg, ip). Together, these studies support the hypothesis that Hsp70 may be a promising target for anticancer therapeutics.


Assuntos
Benzotiazóis/química , Benzotiazóis/farmacologia , Desenho de Fármacos , Proteínas de Choque Térmico HSP70/metabolismo , Compostos de Piridínio/química , Tiazóis/química , Regulação Alostérica/efeitos dos fármacos , Animais , Benzotiazóis/metabolismo , Linhagem Celular Tumoral , Feminino , Proteínas de Choque Térmico HSP70/química , Humanos , Células MCF-7 , Camundongos , Simulação de Acoplamento Molecular , Ligação Proteica/efeitos dos fármacos , Conformação Proteica , Relação Estrutura-Atividade
11.
Cancer Res ; 78(14): 4022-4035, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29764864

RESUMO

Castration-resistant prostate cancer (CRPC) is characterized by reactivation of androgen receptor (AR) signaling, in part by elevated expression of AR splice variants (ARv) including ARv7, a constitutively active, ligand binding domain (LBD)-deficient variant whose expression has been correlated with therapeutic resistance and poor prognosis. In a screen to identify small-molecule dual inhibitors of both androgen-dependent and androgen-independent AR gene signatures, we identified the chalcone C86. Binding studies using purified proteins and CRPC cell lysates revealed C86 to interact with Hsp40. Pull-down studies using biotinylated-C86 found Hsp40 present in a multiprotein complex with full-length (FL-) AR, ARv7, and Hsp70 in CRPC cells. Treatment of CRPC cells with C86 or the allosteric Hsp70 inhibitor JG98 resulted in rapid protein destabilization of both FL-AR and ARv, including ARv7, concomitant with reduced FL-AR- and ARv7-mediated transcriptional activity. The glucocorticoid receptor, whose elevated expression in a subset of CRPC also leads to androgen-independent AR target gene transcription, was also destabilized by inhibition of Hsp40 or Hsp70. In vivo, Hsp40 or Hsp70 inhibition demonstrated single-agent and combinatorial activity in a 22Rv1 CRPC xenograft model. These data reveal that, in addition to recognized roles of Hsp40 and Hsp70 in FL-AR LBD remodeling, ARv lacking the LBD remain dependent on molecular chaperones for stability and function. Our findings highlight the feasibility and potential benefit of targeting the Hsp40/Hsp70 chaperone axis to treat prostate cancer that has become resistant to standard antiandrogen therapy.Significance: These findings highlight the feasibility of targeting the Hsp40/Hsp70 chaperone axis to treat CRPC that has become resistant to standard antiandrogen therapy. Cancer Res; 78(14); 4022-35. ©2018 AACR.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Chaperonas Moleculares/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptores Androgênicos/metabolismo , Células A549 , Processamento Alternativo/efeitos dos fármacos , Antagonistas de Androgênios/farmacologia , Androgênios/metabolismo , Animais , Células COS , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Células HEK293 , Humanos , Masculino , Camundongos Nus , Splicing de RNA/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
12.
Cancer Cell ; 27(3): 317-9, 2015 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-25759015

RESUMO

Many cancer cells require exogenous glutamine for proliferation, supply of TCA cycle intermediates, lipid synthesis, mTOR activity, and neutralization of reactive oxygen species. In this issue of Cancer Cell, Jeon and colleagues identify chemotherapy-induced endoplasmic reticulum stress as a novel strategy to target glutamine dependence.


Assuntos
Sistema ASC de Transporte de Aminoácidos/metabolismo , Sistema A de Transporte de Aminoácidos/metabolismo , Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Proteínas de Ligação a DNA/fisiologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Paclitaxel/farmacologia , Ubiquitina-Proteína Ligases/fisiologia , Animais , Feminino , Humanos , Antígenos de Histocompatibilidade Menor
13.
Cancer Prev Res (Phila) ; 8(3): 249-57, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25604133

RESUMO

(-)-Epigallocatechin gallate (EGCG), a major tea polyphenol, elicits anticancer effects. However, the mechanism of action is not fully understood. Our laboratory previously showed that EGCG inhibits heat shock protein 90 (HSP90). We used nontumorigenic (NT), tumorigenic, and metastatic cancer cells from a novel human prostate cancer progression model to test the hypotheses that certain stages are more or less sensitive to EGCG and that sensitivity is related to HSP90 inhibition. Treatment of cells with EGCG, novobiocin, or 17-AAG resulted in more potent cytotoxic effects on tumorigenic and metastatic cells than NT cells. When tumorigenic or metastatic cells were grown in vivo, mice supplemented with 0.06% EGCG in drinking water developed significantly smaller tumors than untreated mice. Furthermore, EGCG prevented malignant transformation in vivo using the full prostate cancer model. To elucidate the mechanism of EGCG action, we performed binding assays with EGCG-Sepharose, a C-terminal HSP90 antibody, and HSP90 mutants. These experiments revealed that EGCG-Sepharose bound more HSP90 from metastatic cells compared with NT cells and binding occurred through the HSP90 C-terminus. In addition, EGCG bound HSP90 mutants that mimic both complexed and uncomplexed HSP90. Consistent with HSP90 inhibitory activity, EGCG, novobiocin, and 17-AAG induced changes in HSP90-client proteins in NT cells and larger differences in metastatic cells. These data suggest that EGCG may be efficacious for the treatment of prostate cancer because it preferentially targets cancer cells and inhibits a molecular chaperone supportive of the malignant phenotype.


Assuntos
Antineoplásicos/farmacologia , Catequina/análogos & derivados , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Hiperplasia Prostática/tratamento farmacológico , Neoplasias da Próstata/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Catequina/farmacologia , Progressão da Doença , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Masculino , Camundongos , Hiperplasia Prostática/metabolismo , Hiperplasia Prostática/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/secundário , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas , Cicatrização/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Virology ; 421(1): 19-27, 2011 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-21982220

RESUMO

The Human Papillomavirus type-16 (HPV-16) E6 and E7 oncogenes are selectively retained and expressed in cervical carcinomas, and expression of E6 and E7 is sufficient to immortalize human cervical epithelial cells. Expression of the epidermal growth factor receptor (EGFR) is often increased in cervical dysplasia and carcinoma, and HPV oncoproteins stimulate cell growth via the EGFR pathway. We found that erlotinib, a specific inhibitor of EGFR tyrosine kinase activity, prevented immortalization of cultured human cervical epithelial cells by the complete HPV-16 genome or the E6/E7 oncogenes. Erlotinib stimulated apoptosis in cells that expressed HPV-16 E6/E7 proteins and induced senescence in a subpopulation of cells that did not undergo apoptosis. Since immortalization by HPV E6/E7 is an important early event in cervical carcinogenesis, the EGFR is a potential target for chemoprevention or therapy in women who have a high risk for cervical cancer.


Assuntos
Transformação Celular Viral/efeitos dos fármacos , Regulação para Baixo , Receptores ErbB/genética , Papillomavirus Humano 16/fisiologia , Infecções por Papillomavirus/genética , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Neoplasias do Colo do Útero/genética , Apoptose/efeitos dos fármacos , Colo do Útero/efeitos dos fármacos , Colo do Útero/metabolismo , Colo do Útero/virologia , Regulação para Baixo/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Cloridrato de Erlotinib , Feminino , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Papillomavirus Humano 16/efeitos dos fármacos , Papillomavirus Humano 16/genética , Humanos , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , Infecções por Papillomavirus/tratamento farmacológico , Infecções por Papillomavirus/metabolismo , Infecções por Papillomavirus/virologia , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/virologia
15.
Am J Physiol Regul Integr Comp Physiol ; 295(2): R681-9, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18509099

RESUMO

We tested our hypothesis that postischemic conditioning (PostC) is effective in salvage of ischemic skeletal muscle from reperfusion injury and the mechanism involves inhibition of opening of the mitochondrial permeability transition pore (mPTP). In bilateral 8x13 cm pig latissimus dorsi muscle flaps subjected to 4 h ischemia, muscle infarction increased from 22+/-4 to 41+/-1% between 2 and 24 h reperfusion and remained unchanged at 48 (38+/-6%) and 72 (40+/-1%) h reperfusion (P<0.05; n=4 pigs). PostC induced by four cycles of 30-s reperfusion/reocclusion at the onset of reperfusion after 4 h ischemia reduced muscle infarction from 44+/-2 to 22+/-2% at 48 h reperfusion. This infarct protective effect of PostC was mimicked by intravenous injection of the mPTP opening inhibitor cyclosporin A or NIM-811 (10 mg/kg) at 5 min before the end of 4 h ischemia and was abolished by intravenous injection of the mPTP opener atractyloside (10 mg/kg) at 5 min before PostC (P<0.05; n=4-5 pigs). PostC or intravenous cyclosporin A injection at 5 min before reperfusion caused a decrease in muscle myeloperoxidase activity and mitochondrial free Ca2+ concentration and an increase in muscle ATP content after 4 h ischemia and 2 h reperfusion compared with the time-matched controls. These effects of PostC were abolished by intravenous injection of atractyloside at 5 min before PostC (P<0.05; n=6 pigs). These observations support our hypothesis that PostC is effective in salvage of ischemic skeletal muscle from reperfusion injury and the mechanism involves inhibition of opening of the mPTP.


Assuntos
Infarto/prevenção & controle , Mitocôndrias Musculares/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Trifosfato de Adenosina/metabolismo , Animais , Atractilosídeo/administração & dosagem , Cálcio/metabolismo , Ciclosporina/administração & dosagem , Modelos Animais de Doenças , Infarto/metabolismo , Infarto/patologia , Injeções Intravenosas , Mitocôndrias Musculares/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/efeitos dos fármacos , Poro de Transição de Permeabilidade Mitocondrial , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Peroxidase/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Suínos , Fatores de Tempo
16.
Am J Physiol Regul Integr Comp Physiol ; 289(6): R1609-17, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16179491

RESUMO

We have previously demonstrated that remote ischemic preconditioning (IPC) by instigation of three cycles of 10-min occlusion/reperfusion in a hindlimb of the pig elicits an early phase of infarct protection in local and distant skeletal muscles subjected to 4 h of ischemia immediately after remote IPC. The aim of this project was to test our hypothesis that hindlimb remote IPC also induces a late phase of infarct protection in skeletal muscle and that K(ATP) channels play a pivotal role in the trigger and mediator mechanisms. We observed that pig bilateral latissimus dorsi (LD) muscle flaps sustained 46 +/- 2% infarction when subjected to 4 h of ischemia/48 h of reperfusion. The late phase of infarct protection appeared at 24 h and lasted up to 72 h after hindlimb remote IPC. The LD muscle infarction was reduced to 28 +/- 3, 26 +/- 1, 23 +/- 2, 24 +/- 2 and 24 +/- 4% at 24, 28, 36, 48 and 72 h after remote IPC, respectively (P < 0.05; n = 8). In subsequent studies, hindlimb remote IPC or intravenous injection of the sarcolemmal K(ATP) (sK(ATP)) channel opener P-1075 (2 microg/kg) at 24 h before 4 h of sustained ischemia (i.e., late preconditioning) reduced muscle infarction from 43 +/- 4% (ischemic control) to 24 +/- 2 and 19 +/- 3%, respectively (P < 0.05, n = 8). Intravenous injection of the sK(ATP) channel inhibitor HMR 1098 (6 mg/kg) or the nonspecific K(ATP) channel inhibitor glibenclamide (Glib; 1 mg/kg) at 10 min before remote IPC completely blocked the infarct- protective effect of remote IPC in LD muscle flaps subjected to 4 h of sustained ischemia at 24 h after remote IPC. Intravenous bolus injection of the mitochondrial K(ATP) (mK(ATP)) channel inhibitor 5-hydroxydecanoate (5-HD; 5 mg/kg) immediately before remote IPC and 30-min intravenous infusion of 5-HD (5 mg/kg) during remote IPC did not affect the infarct-protective effect of remote IPC in LD muscle flaps. However, intravenous Glib or 5-HD, but not HMR 1098, given 24 h after remote IPC completely blocked the late infarct-protective effect of remote IPC in LD muscle flaps. None of these drug treatments affected the infarct size of control LD muscle flaps. The late phase of infarct protection was associated with a higher (P < 0.05) muscle content of ATP at the end of 4 h of ischemia and 1.5 h of reperfusion and a lower (P < 0.05) neutrophilic activity at the end of 1.5 h of reperfusion compared with the time-matched control. In conclusion, these findings support our hypothesis that hindlimb remote IPC induces an uninterrupted long (48 h) late phase of infarct protection, and sK(ATP) and mK(ATP) channels play a central role in the trigger and mediator mechanism, respectively.


Assuntos
Infarto/prevenção & controle , Infarto/fisiopatologia , Precondicionamento Isquêmico/métodos , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/fisiopatologia , Animais , Masculino , Suínos , Fatores de Tempo , Resultado do Tratamento
17.
Am J Physiol Heart Circ Physiol ; 288(2): H559-67, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15458954

RESUMO

We previously demonstrated in the pig that instigation of three cycles of 10 min of occlusion and reperfusion in a hindlimb by tourniquet application (approximately 300 mmHg) elicited protection against ischemia-reperfusion injury (infarction) in multiple distant skeletal muscles subsequently subjected to 4 h of ischemia and 48 h of reperfusion, but the mechanism was not studied. The aim of this project was to test our hypothesis that mitochondrial ATP-sensitive potassium (KATP) (mKATP) channels play a central role in the trigger and mediator mechanisms of hindlimb remote ischemic preconditioning (IPC) of skeletal muscle against infarction in the pig. We observed in the pig that hindlimb remote IPC reduced the infarct size of latissimus dorsi (LD) muscle flaps (8 x 13 cm) from 45 +/- 2% to 22 +/- 3% (n = 10; P < 0.05). The nonselective KATP channel inhibitor glibenclamide (0.3 mg/kg) or the selective mKATP channel inhibitor 5-hydroxydecanoate (5-HD, 5 mg/kg), but not the selective sarcolemmal KATP (sKATP) channel inhibitor HMR-1098 (3 mg/kg), abolished the infarct-protective effect of hindlimb remote IPC in LD muscle flaps (n = 10, P < 0.05) when these drugs were injected intravenously at 10 min before remote IPC. In addition, intravenous bolus injection of glibenclamide (1 mg/kg) or 5-HD (10 mg/kg) at the end of hindlimb remote IPC also abolished the infarct protection in LD muscle flaps (n = 10; P < 0.05). Furthermore, intravenous injection of the specific mKATPchannel opener BMS-191095 (2 mg/kg) at 10 min before 4 h of ischemia protected the LD muscle flap against infarction to a similar extent as hindlimb remote IPC, and this infarct-protective effect of BMS-191095 was abolished by intravenous bolus injection of 5-HD (5 mg/kg) at 10 min before or after intravenous injection of BMS-191095 (n = 10; P < 0.05). The infarct protective effect of BMS-191095 was associated with a higher muscle content of ATP at the end of 4 h of ischemia and a decrease in muscle neutrophilic myeloperoxidase activity at the end of 1.5 h of reperfusion compared with the time-matched control (n = 10, P < 0.05). These observations led us to conclude that mKATP channels play a central role in the trigger and mediator mechanisms of hindlimb remote IPC of skeletal muscle against infarction in the pig, and the opening of mKATP channels in ischemic skeletal muscle is associated with an ATP-sparing effect during sustained ischemia and attenuation of neutrophil accumulation during reperfusion.


Assuntos
Infarto/metabolismo , Precondicionamento Isquêmico , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/metabolismo , Canais de Potássio/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Benzamidas/farmacologia , Benzopiranos/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Membro Posterior , Imidazóis/farmacologia , Infarto/patologia , Infarto/fisiopatologia , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Masculino , Mitocôndrias/metabolismo , Músculo Esquelético/patologia , Neutrófilos/enzimologia , Peroxidase/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Sus scrofa
19.
Am J Physiol Heart Circ Physiol ; 286(3): H946-54, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14644765

RESUMO

Various laboratories have reported that local subcutaneous or subdermal injection of VEGF(165) at the time of surgery effectively attenuated ischemic necrosis in rat skin flaps, but the mechanism was not studied and enhanced angiogenesis was implicated. In the present study, we used the clinically relevant isolated perfused 6 x 16-cm pig buttock skin flap model to 1) test our hypothesis that VEGF(165) is a potent vasodilator and acute VEGF(165) treatment increases skin perfusion; and 2) investigate the mechanism of VEGF(165)-induced skin vasorelaxation. We observed that VEGF(165) (5 x 10(-16)-5 x 10(-11) M) elicited a concentration-dependent decrease in perfusion pressure (i.e., vasorelaxation) in skin flaps preconstricted with a submaximal concentration of norepinephrine (NE), endothelin-1, or U-46619. The VEGF(165)-induced skin vasorelaxation was confirmed using a dermofluorometry technique for assessment of skin perfusion. The vasorelaxation potency of VEGF(165) in NE-preconstricted skin flaps (pD(2) = 13.57 +/- 0.31) was higher (P < 0.05) than that of acetylcholine (pD(2) = 7.08 +/- 0.24). Human placental factor, a specific VEGF receptor-1 agonist, did not elicit any vasorelaxation effect. However, a specific antibody to VEGF receptor-2 (1 microg/ml) or a specific VEGF receptor-2 inhibitor (5 x 10(-6) M SU-1498) blocked the vasorelaxation effect of VEGF(165) in NE-preconstricted skin flaps. These observations indicate that the potent vasorelaxation effect of VEGF(165) in the skin vasculature is initiated by the activation of VEGF receptor-2. Furthermore, using pharmacological probes, we observed that the postreceptor signaling pathways of VEGF(165)-induced skin vasorelaxation involved activation of phospholipase C and protein kinase C, an increase in inositol 1,4,5-trisphosphate activity, release of the intra-cellular Ca(2+) store, and synthesis/release of endothelial nitric oxide, which predominantly triggered the effector mechanism of VEGF(165)-induced vasorelaxation. This information provides, for the first time, an important insight into the mechanism of VEGF(165) protein or gene therapy in the prevention/treatment of ischemia in skin flap surgery and skin ischemic diseases.


Assuntos
Derme/irrigação sanguínea , Derme/cirurgia , Retalhos Cirúrgicos/irrigação sanguínea , Fator A de Crescimento do Endotélio Vascular/farmacologia , Vasodilatadores/farmacologia , Animais , Epoprostenol/metabolismo , Modelos Animais , Óxido Nítrico/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Fluxo Sanguíneo Regional/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Sus scrofa , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa