Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Hum Mol Genet ; 26(9): 1732-1746, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334913

RESUMO

TAR DNA binding protein 43 (TDP-43) is a major disease-associated protein involved in the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U). Our previous studies found a direct association between TDP-43 and heterogeneous nuclear ribonucleoprotein K (hnRNP K). In this study, utilizing ALS patient fibroblasts harboring a TDP-43M337V mutation and NSC-34 motor neuronal cell line expressing TDP-43Q331K mutation, we show that hnRNP K expression is impaired in urea soluble extracts from mutant TDP-43 cell models. This was confirmed in vivo using TDP-43Q331K and inducible TDP-43A315T murine ALS models. We further investigated the potential pathological effects of mutant TDP-43-mediated changes to hnRNP K metabolism by RNA binding immunoprecipitation analysis. hnRNP K protein was bound to antioxidant NFE2L2 transcripts encoding Nrf2 antioxidant transcription factor, with greater enrichment in TDP-43M337V patient fibroblasts compared to healthy controls. Subsequent gene expression profiling revealed an increase in downstream antioxidant transcript expression of Nrf2 signaling in the spinal cord of TDP-43Q331K mice compared to control counterparts, yet the corresponding protein expression was not up-regulated in transgenic mice. Despite the elevated expression of antioxidant transcripts, we observed impaired levels of glutathione (downstream Nrf2 antioxidant) in TDP-43M337V patient fibroblasts and astrocyte cultures from TDP-43Q331K mice, indicative of elevated oxidative stress and failure of some upregulated antioxidant genes to be translated into protein. Our findings indicate that further exploration of the interplay between hnRNP K (or other hnRNPs) and Nrf2-mediated antioxidant signaling is warranted and may be an important driver for motor neuron degeneration in ALS.


Assuntos
Proteínas de Ligação a DNA , Ribonucleoproteínas Nucleares Heterogêneas Grupo K , Animais , Humanos , Camundongos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Antioxidantes , Linhagem Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Demência Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios Motores/metabolismo , Mutação , Fator 2 Relacionado a NF-E2/metabolismo , RNA/metabolismo , Medula Espinal/metabolismo
2.
Hum Mol Genet ; 24(6): 1655-69, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25410660

RESUMO

Cytosolic accumulation of TAR DNA binding protein 43 (TDP-43) is a major neuropathological feature of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). However, the mechanisms involved in TDP-43 accumulation remain largely unknown. Previously, we reported that inhibitors of cyclin-dependent kinases (CDKs) prevented cytosolic stress granule accumulation of TDP-43, correlating with depletion of heterogeneous ribonucleoprotein (hnRNP) K from stress granules. In the present study, we further investigated the relationship between TDP-43 and hnRNP K and their control by CDKs. Inhibition of CDK2 abrogated the accumulation of TDP-43 into stress granules. Phosphorylated CDK2 co-localized with accumulated TDP-43 and phosphorylated hnRNP K in stress granules. Inhibition of CDK2 phosphorylation blocked phosphorylation of hnRNP K, preventing its incorporation into stress granules. Due to interaction between hnRNP K with TDP-43, the loss of hnRNP K from stress granules prevented accumulation of TDP-43. Mutation of Ser216 and Ser284 phosphorylation sites on hnRNP K inhibited hnRNP K- and TDP-43-positive stress granule formation in transfected cells. The interaction between hnRNP K and TDP-43 was further confirmed by the loss of TDP-43 accumulation following siRNA-mediated inhibition of hnRNP K expression. A substantial decrease of CDK2 and hnRNP K expression in spinal cord motor neurons in ALS patients demonstrates a potential key role for these proteins in ALS and TDP-43 accumulation, indicating that further investigation of the association between hnRNP K and TDP-43 is warranted. Understanding how kinase activity modulates TDP-43 accumulation may provide new pharmacological targets for disease intervention.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Esclerose Lateral Amiotrófica/genética , Animais , Citosol/metabolismo , Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Humanos , Camundongos , Mutação de Sentido Incorreto , Fosforilação
3.
Metabolites ; 14(8)2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39195509

RESUMO

Glioblastoma (IDH-wildtype) represents a formidable challenge in oncology, lacking effective chemotherapeutic or biological interventions. The metabolic reprogramming of cancer cells is a hallmark of tumor progression and drug resistance, yet the role of metabolic reprogramming in glioblastoma during drug treatment remains poorly understood. The dihydroorotate dehydrogenase (DHODH) inhibitor BAY2402234 is a blood-brain barrier penetrant drug showing efficiency in in vivo models of many brain cancers. In this study, we investigated the effect of BAY2402234 in regulating the metabolic phenotype of EGFRWT and EGFRvIII patient-derived glioblastoma cell lines. Our findings reveal the selective cytotoxicity of BAY2402234 toward EGFRWT glioblastoma subtypes with minimal effect on EGFRvIII patient cells. At sublethal doses, BAY2402234 induces triglyceride synthesis at the expense of membrane lipid synthesis and fatty acid oxidation in EGFRWT glioblastoma cells, while these effects are not observed in EGFRvIII glioblastoma cells. Furthermore, BAY2402234 reduced the abundance of signaling lipid species in EGFRWT glioblastoma. This study elucidates genetic mutation-specific metabolic plasticity and efficacy in glioblastoma cells in response to drug treatment, offering insights into therapeutic avenues for precision medicine approaches.

4.
EMBO Rep ; 12(1): 77-83, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21151042

RESUMO

The proapoptotic Bcl2 homology domain 3(BH3)-only protein Bim is controlled by stringent post-translational regulation, predominantly through alterations in phosphorylation status. To identify new kinases involved in its regulation, we carried out a yeast two-hybrid screen using a non-spliceable variant of the predominant isoform--Bim(EL)--as the bait and identified the regulatory subunit of cyclic-AMP-dependent protein kinase A--PRKAR1A--as an interacting partner. We also show that protein kinase A (PKA) is a Bim(EL) isoform-specific kinase that promotes its stabilization. Inhibition of PKA or mutation of the PKA phosphorylation site within Bim(EL) resulted in its accelerated proteasome-dependent degradation. These results might have implications for human diseases that are characterized by abnormally increased PKA activity, such as the Carney complex and dilated cardiomyopathy.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Proteínas de Membrana/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Sequência de Aminoácidos , Animais , Proteína 11 Semelhante a Bcl-2 , Humanos , Camundongos , Fosforilação , Ligação Proteica , Estabilidade Proteica , Alinhamento de Sequência , Técnicas do Sistema de Duplo-Híbrido
5.
Cell Death Differ ; 30(4): 1033-1046, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36739334

RESUMO

Mutant TP53 proteins are thought to drive the development and sustained expansion of cancers at least in part through the loss of the wild-type (wt) TP53 tumour suppressive functions. Therefore, compounds that can restore wt TP53 functions in mutant TP53 proteins are expected to inhibit the expansion of tumours expressing mutant TP53. APR-246 has been reported to exert such effects in malignant cells and is currently undergoing clinical trials in several cancer types. However, there is evidence that APR-246 may also kill malignant cells that do not express mutant TP53. To support the clinical development of APR-246 it is important to understand its mechanism(s) of action. By establishing isogenic background tumour cell lines with different TP53/TRP53 states, we found that APR-246 can kill malignant cells irrespective of their TP53/TRP53 status. Accordingly, RNAseq analysis revealed that treatment with APR-246 induces expression of the same gene set in Eµ-Myc mouse lymphoma cells of all four possible TRP53 states, wt, wt alongside mutant, knockout and knockout alongside mutant. We found that depending on the type of cancer cell and the concentration of APR-246 used, this compound can kill malignant cells through induction of various programmed cell death pathways, including apoptosis, necroptosis and ferroptosis. The sensitivity of non-transformed cells to APR-246 also depended on the cell type. These findings reveal that the clinical testing of APR-246 should not be limited to cancers expressing mutant TP53 but expanded to cancers that express wt TP53 or are TP53-deficient.


Assuntos
Genes p53 , Proteína Supressora de Tumor p53 , Animais , Camundongos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Apoptose , Linhagem Celular Tumoral , Mutação
6.
Blood Adv ; 7(8): 1560-1571, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36075025

RESUMO

Platelets have been shown to enhance the survival of lymphoma cell lines. However, it remains unclear whether they play a role in lymphoma. Here, we investigated the potential role of platelets and/or megakaryocytes in the progression of Eµ-myc lymphoma. Eµ-myc tumor cells were transplanted into recipient wild-type (WT) control, Mpl-/-, or TpoTg mice, which exhibited normal, low, and high platelet and megakaryocyte counts, respectively. TpoTg mice that underwent transplantation exhibited enhanced lymphoma progression with increased white blood cell (WBC) counts, spleen and lymph node weights, and enhanced liver infiltration when compared with WT mice. Conversely, tumor-bearing Mpl-/- mice had reduced WBC counts, lymph node weights, and less liver infiltration than WT mice. Using an Mpl-deficient thrombocytopenic immunocompromised mouse model, our results were confirmed using the human non-Hodgkin lymphoma GRANTA cell line. Although we found that platelets and platelet-released molecules supported Eµ-myc tumor cell survival in vitro, pharmacological inhibition of platelet function or anticoagulation in WT mice transplanted with Eµ-myc did not improve disease outcome. Furthermore, transient platelet depletion or sustained Bcl-xL-dependent thrombocytopenia did not alter lymphoma progression. Cytokine analysis of the bone marrow fluid microenvironment revealed increased levels of the proinflammatory molecule interleukin 1 in TpoTg mice, whereas these levels were lower in Mpl-/- mice. Moreover, RNA sequencing of blood-resident Eµ-myc lymphoma cells from TpoTg and WT mice after tumor transplantation revealed the upregulation of hallmark gene sets associated with an inflammatory response in TpoTg mice. We propose that the proinflammatory microenvironment in TpoTg mice promotes lymphoma progression.


Assuntos
Linfoma , Trombocitopenia , Camundongos , Animais , Humanos , Megacariócitos/metabolismo , Receptores de Trombopoetina , Plaquetas/metabolismo , Trombocitopenia/genética , Linfoma/genética , Microambiente Tumoral
7.
Cell Death Differ ; 29(7): 1335-1348, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35332309

RESUMO

Glioblastoma multiforme (GBM) is the most common and aggressive form of brain cancer, with treatment options often constrained due to inherent resistance of malignant cells to conventional therapy. We investigated the impact of triggering programmed cell death (PCD) by using BH3 mimetic drugs in human GBM cell lines. We demonstrate that co-targeting the pro-survival proteins BCL-XL and MCL-1 was more potent at killing six GBM cell lines compared to conventional therapy with Temozolomide or the bromodomain inhibitor JQ1 in vitro. Enhanced cell killing was observed in U251 and SNB-19 cells in response to dual treatment with TMZ or JQ1 combined with a BCL-XL inhibitor, compared to single agent treatment. This was reflected in abundant cleavage/activation of caspase-3 and cleavage of PARP1, markers of apoptosis. U251 and SNB-19 cells were more readily killed by a combination of BH3 mimetics targeting BCL-XL and MCL-1 as opposed to dual treatment with the BCL-2 inhibitor Venetoclax and a BCL-XL inhibitor. The combined loss of BAX and BAK, the essential executioners of intrinsic apoptosis, rendered U251 and SNB-19 cells refractory to any of the drug combinations tested, demonstrating that apoptosis is responsible for their killing. In an orthotopic mouse model of GBM, we demonstrate that the BCL-XL inhibitor A1331852 can penetrate the brain, with A1331852 detected in both tumour and healthy brain regions. We also investigated the impact of combining small molecule inducers of ferroptosis, erastin and RSL3, with BH3 mimetic drugs. We found that a BCL-XL or an MCL-1 inhibitor potently cooperates with inducers of ferroptosis in killing U251 cells. Overall, these findings demonstrate the potential of dual targeting of distinct PCD signalling pathways in GBM and may guide the utility of BCL-XL inhibitors and inducers of ferroptosis with standard of care treatment for improved therapies for GBM.


Assuntos
Antineoplásicos , Ferroptose , Glioblastoma , Animais , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Glioblastoma/tratamento farmacológico , Humanos , Camundongos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Temozolomida/farmacologia , Proteína bcl-X/metabolismo
8.
Cell Death Differ ; 28(7): 2029-2044, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099897

RESUMO

Tightly orchestrated programmed cell death (PCD) signalling events occur during normal neuronal development in a spatially and temporally restricted manner to establish the neural architecture and shaping the CNS. Abnormalities in PCD signalling cascades, such as apoptosis, necroptosis, pyroptosis, ferroptosis, and cell death associated with autophagy as well as in unprogrammed necrosis can be observed in the pathogenesis of various neurological diseases. These cell deaths can be activated in response to various forms of cellular stress (exerted by intracellular or extracellular stimuli) and inflammatory processes. Aberrant activation of PCD pathways is a common feature in neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), Alzheimer's disease, Parkinson's disease, and Huntington's disease, resulting in unwanted loss of neuronal cells and function. Conversely, inactivation of PCD is thought to contribute to the development of brain cancers and to impact their response to therapy. For many neurodegenerative diseases and brain cancers current treatment strategies have only modest effect, engendering the need for investigations into the origins of these diseases. With many diseases of the brain displaying aberrations in PCD pathways, it appears that agents that can either inhibit or induce PCD may be critical components of future therapeutic strategies. The development of such therapies will have to be guided by preclinical studies in animal models that faithfully mimic the human disease. In this review, we briefly describe PCD and unprogrammed cell death processes and the roles they play in contributing to neurodegenerative diseases or tumorigenesis in the brain. We also discuss the interplay between distinct cell death signalling cascades and disease pathogenesis and describe pharmacological agents targeting key players in the cell death signalling pathways that have progressed through to clinical trials.


Assuntos
Autofagia , Encéfalo/fisiopatologia , Doenças Neurodegenerativas/fisiopatologia , Neurônios/patologia , Morte Celular Regulada , Animais , Encéfalo/patologia , Humanos , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/terapia , Transdução de Sinais
9.
Cell Death Dis ; 12(1): 133, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510145

RESUMO

Necroptosis is a pro-inflammatory cell death program executed by the terminal effector, mixed lineage kinase domain-like (MLKL). Previous studies suggested a role for the necroptotic machinery in platelets, where loss of MLKL or its upstream regulator, RIPK3 kinase, impacted thrombosis and haemostasis. However, it remains unknown whether necroptosis operates within megakaryocytes, the progenitors of platelets, and whether necroptotic cell death might contribute to or diminish platelet production. Here, we demonstrate that megakaryocytes possess a functional necroptosis signalling cascade. Necroptosis activation leads to phosphorylation of MLKL, loss of viability and cell swelling. Analyses at steady state and post antibody-mediated thrombocytopenia revealed that platelet production was normal in the absence of MLKL, however, platelet activation and haemostasis were impaired with prolonged tail re-bleeding times. We conclude that MLKL plays a role in regulating platelet function and haemostasis and that necroptosis signalling in megakaryocytes is dispensable for platelet production.


Assuntos
Plaquetas/metabolismo , Morte Celular/fisiologia , Megacariócitos/metabolismo , Necroptose/fisiologia , Animais , Humanos , Camundongos
10.
J Med Chem ; 61(3): 711-723, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29232129

RESUMO

Bis(thiosemicarbazonato)copper(II) complexes are of interest as potential therapeutics for cancer and neurodegenerative diseases as well as imaging agents for positron emission tomography (PET). The cellular uptake of six bis(thiosemcarbazonato)copper(II)complexes derived from glyoxal, with different functional groups Cu(gtsx) where x = different functional groups, was investigated in SKOV-3, HEK293, and HEK293 P-gp cell lines. Treatment of the cells with the copper complexes increased intracellular copper and increased levels of p-ERK due to activation of the Ras-Raf-MEK-ERK pathway. Treatment of SKOV-3 cells with low concentrations (µM) of two of the copper complexes led to trafficking of the endogenous copper transporter ATP7A from the Golgi network to the cell membrane. Experiments in HEK293 and HEK293-P-gp cells suggest that Cu(gtsm) and Cu(gtse) are substrates for the P-gp efflux protein but the complex with a pyrrolidine functional group, Cu(gtspyr), is not. A PET experiment in mice showed that [64Cu]Cu(gtspyr) has reasonable brain uptake but high liver uptake.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , ATPases Transportadoras de Cobre/metabolismo , Cobre/metabolismo , Glioxal/química , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Tiossemicarbazonas/química , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Cobre/química , Células HEK293 , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Transporte Proteico/efeitos dos fármacos
12.
Front Neurosci ; 12: 668, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30319344

RESUMO

Background: Neuroinflammation and biometal dyshomeostasis are key pathological features of several neurodegenerative diseases, including Alzheimer's disease (AD). Inflammation and biometals are linked at the molecular level through regulation of metal buffering proteins such as the metallothioneins. Even though the molecular connections between metals and inflammation have been demonstrated, little information exists on the effect of copper modulation on brain inflammation. Methods: We demonstrate the immunomodulatory potential of the copper bis(thiosemicarbazone) complex CuII(atsm) in an neuroinflammatory model in vivo and describe its anti-inflammatory effects on microglia and astrocytes in vitro. Results: By using a sophisticated in vivo magnetic resonance imaging (MRI) approach, we report the efficacy of CuII(atsm) in reducing acute cerebrovascular inflammation caused by peripheral administration of bacterial lipopolysaccharide (LPS). CuII(atsm) also induced anti-inflammatory outcomes in primary microglia [significant reductions in nitric oxide (NO), monocyte chemoattractant protein 1 (MCP-1), and tumor necrosis factor (TNF)] and astrocytes [significantly reduced NO, MCP-1, and interleukin 6 (IL-6)] in vitro. These anti-inflammatory actions were associated with increased cellular copper levels and increased the neuroprotective protein metallothionein-1 (MT1) in microglia and astrocytes. Conclusion: The beneficial effects of CuII(atsm) on the neuroimmune system suggest copper complexes are potential therapeutics for the treatment of neuroinflammatory conditions.

13.
Sci Rep ; 7(1): 14953, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-29097774

RESUMO

Thrombopoietin (TPO) is the master cytokine regulator of megakaryopoiesis. In addition to regulation of megakaryocyte and platelet number, TPO is important for maintaining proper hematopoietic stem cell (HSC) function. It was previously shown that a number of lymphoid genes were upregulated in HSCs from Tpo -/- mice. We investigated if absent or enhanced TPO signaling would influence normal B-lymphopoiesis. Absent TPO signaling in Mpl -/- mice led to enrichment of a common lymphoid progenitor (CLP) signature in multipotential lineage-negative Sca-1+c-Kit+ (LSK) cells and an increase in CLP formation. Moreover, Mpl -/- mice exhibited increased numbers of PreB2 and immature B-cells in bone marrow and spleen, with an increased proportion of B-lymphoid cells in the G1 phase of the cell cycle. Conversely, elevated TPO signaling in Tpo Tg mice was associated with reduced B-lymphopoiesis. Although at steady state, peripheral blood lymphocyte counts were normal in both models, Mpl -/- Eµ-myc mice showed an enhanced preneoplastic phase with increased numbers of splenic PreB2 and immature B-cells, a reduced quiescent fraction, and augmented blood lymphocyte counts. Thus, although Mpl is not expressed on lymphoid cells, TPO signaling may indirectly influence B-lymphopoiesis and the preneoplastic state in Myc-driven B-cell lymphomagenesis by lineage priming in multipotential progenitor cells.


Assuntos
Linfócitos B/citologia , Células Progenitoras Linfoides/citologia , Linfopoese , Transdução de Sinais , Trombopoetina/metabolismo , Animais , Linfócitos B/metabolismo , Ciclo Celular , Feminino , Células Progenitoras Linfoides/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
14.
CNS Drugs ; 30(3): 227-43, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26895253

RESUMO

Amyotrophic lateral sclerosis (ALS) is a progressive adult-onset, neurodegenerative disease characterized by the degeneration of upper and lower motor neurons. Over recent years, numerous genes ha ve been identified that promote disease pathology, including SOD1, TARDBP, and the expanded hexanucleotide repeat (GGGGCC) within C9ORF72. However, despite these major advances in identifying genes contributing to ALS pathogenesis, there remains only one currently approved therapeutic: the glutamate antagonist, riluzole. Seminal breakthroughs in the pathomechanisms and genetic factors associated with ALS have heavily relied on the use of rodent models that recapitulate the ALS phenotype; however, while many therapeutics have proved to be significant in animal models by prolonging life and rescuing motor deficits, they have failed in human clinical trials. This may be due to fundamental differences between rodent models and human disease, the fact that animal models are based on overexpression of mutated genes, and confounding issues such as difficulties mimicking the dosing schedules and regimens implemented in mouse models to humans. Here, we review the major pathways associated with the pathology of ALS, the rodent models engineered to test efficacy of candidate drugs, the advancements being made in stem cell therapy for ALS, and what strategies may be important to circumvent the lack of successful translational studies in the clinic.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Antagonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/uso terapêutico , Riluzol/farmacologia , Riluzol/uso terapêutico , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Modelos Animais de Doenças , Humanos , Mutação/genética
15.
Nat Commun ; 5: 3455, 2014 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-24632563

RESUMO

BH3 mimetic drugs that target BCL-2 family pro-survival proteins to induce tumour cell apoptosis represent a new era in cancer therapy. Clinical trials of navitoclax (ABT-263, which targets BCL-2, BCL-XL and BCL-W) have shown great promise, but encountered dose-limiting thrombocytopenia. Recent work has demonstrated that this is due to the inhibition of BCL-XL, which is essential for platelet survival. These findings raise new questions about the established model of platelet shedding by megakaryocytes, which is thought to be an apoptotic process. Here we generate mice with megakaryocyte-specific deletions of the essential mediators of extrinsic (Caspase-8) and intrinsic (BAK/BAX) apoptosis. We show that megakaryocytes possess a Fas ligand-inducible extrinsic apoptosis pathway. However, Fas activation does not stimulate platelet production, rather, it triggers Caspase-8-mediated killing. Combined loss of Caspase-8/BAK/BAX does not impair thrombopoiesis, but can protect megakaryocytes from death in mice infected with lymphocytic choriomeningitis virus. Thus, apoptosis is dispensable for platelet biogenesis.


Assuntos
Plaquetas/metabolismo , Compostos de Anilina/farmacologia , Animais , Apoptose/fisiologia , Plaquetas/efeitos dos fármacos , Western Blotting , Caspase 8/metabolismo , Eletroforese em Gel de Poliacrilamida , Feminino , Masculino , Camundongos , Ratos , Transdução de Sinais , Sulfonamidas/farmacologia , Trombocitopenia/metabolismo
16.
Acta Neuropathol Commun ; 2: 25, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24581221

RESUMO

BACKGROUND: Aberrant biometal metabolism is a key feature of neurodegenerative disorders including Alzheimer's and Parkinson's diseases. Metal modulating compounds are promising therapeutics for neurodegeneration, but their mechanism of action remains poorly understood. Neuronal ceroid lipofuscinoses (NCLs), caused by mutations in CLN genes, are fatal childhood neurodegenerative lysosomal storage diseases without a cure. We previously showed biometal accumulation in ovine and murine models of the CLN6 variant NCL, but the mechanism is unknown. This study extended the concept that alteration of biometal functions is involved in pathology in these disorders, and investigated molecular mechanisms underlying impaired biometal trafficking in CLN6 disease. RESULTS: We observed significant region-specific biometal accumulation and deregulation of metal trafficking pathways prior to disease onset in CLN6 affected sheep. Substantial progressive loss of the ER/Golgi-resident Zn transporter, Zip7, which colocalized with the disease-associated protein, CLN6, may contribute to the subcellular deregulation of biometal homeostasis in NCLs. Importantly, the metal-complex, ZnII(atsm), induced Zip7 upregulation, promoted Zn redistribution and restored Zn-dependent functions in primary mouse Cln6 deficient neurons and astrocytes. CONCLUSIONS: This study demonstrates the central role of the metal transporter, Zip7, in the aberrant biometal metabolism of CLN6 variants of NCL and further highlights the key contribution of deregulated biometal trafficking to the pathology of neurodegenerative diseases. Importantly, our results suggest that ZnII(atsm) may be a candidate for therapeutic trials for NCLs.


Assuntos
Transporte Biológico/genética , Proteínas de Transporte de Cátions/deficiência , Metais/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Regulação para Cima/genética , Fatores Etários , Fosfatase Alcalina/metabolismo , Animais , Astrócitos/enzimologia , Proteínas de Transporte de Cátions/genética , Células Cultivadas , Dipeptídeos/farmacologia , Modelos Animais de Doenças , Embrião de Mamíferos , Homeostase/genética , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Mutação/genética , Doenças Neurodegenerativas/genética , Ovinos , Tropomiosina/farmacologia , Regulação para Cima/efeitos dos fármacos , Zinco/farmacologia
17.
PLoS One ; 8(6): e67433, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23840699

RESUMO

Abnormal processing of TAR DNA binding protein 43 (TDP-43) has been identified as a major factor in neuronal degeneration during amyotrophic lateral sclerosis (ALS) or frontotemporal lobar degeneration (FTLD). It is unclear how changes to TDP-43, including nuclear to cytosolic translocation and subsequent accumulation, are controlled in these diseases. TDP-43 is a member of the heterogeneous ribonucleoprotein (hnRNP) RNA binding protein family and is known to associate with cytosolic RNA stress granule proteins in ALS and FTLD. hnRNP trafficking and accumulation is controlled by the action of specific kinases including members of the mitogen-activated protein kinase (MAPK) pathway. However, little is known about how kinase pathways control TDP-43 movement and accumulation. In this study, we used an in vitro model of TDP-43-positve stress granule formation to screen for the effect of kinase inhibitors on TDP-43 accumulation. We found that while a number of kinase inhibitors, particularly of the MAPK pathways modulated both TDP-43 and the global stress granule marker, human antigen R (HuR), multiple inhibitors were more specific to TDP-43 accumulation, including inhibitors of cyclin-dependent kinases (CDKs) and glycogen synthase kinase 3 (GSK3). Close correlation was observed between effects of these inhibitors on TDP-43, hnRNP K and TIAR, but often with different effects on HuR accumulation. This may indicate a potential interaction between TDP-43, hnRNP K and TIAR. CDK inhibitors were also found to reverse pre-formed TDP-43-positive stress granules and both CDK and GSK3 inhibitors abrogated the accumulation of C-terminal TDP-43 (219-414) in transfected cells. Further studies are required to confirm the specific kinases involved and whether their action is through phosphorylation of the TDP-43 binding partner hnRNP K. This knowledge provides a valuable insight into the mechanisms controlling abnormal cytoplasmic TDP-43 accumulation and may herald new opportunities for kinase modulation-based therapeutic intervention in ALS and FTLD.


Assuntos
Quinases Ciclina-Dependentes/antagonistas & inibidores , Citosol/efeitos dos fármacos , Citosol/metabolismo , Proteínas de Ligação a DNA/metabolismo , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Linhagem Celular Tumoral , Quinases Ciclina-Dependentes/metabolismo , Proteínas de Ligação a DNA/química , Avaliação Pré-Clínica de Medicamentos , Regulação da Expressão Gênica/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Transporte Proteico/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa