RESUMO
Bemnifosbuvir (AT-527) and AT-752 are guanosine analogues currently in clinical trials against several RNA viruses. Here, we show that these drugs require a minimal set of 5 cellular enzymes for activation to their common 5'-triphosphate AT-9010, with an obligate order of reactions. AT-9010 selectively inhibits essential viral enzymes, accounting for antiviral potency. Functional and structural data at atomic resolution decipher N6-purine deamination compatible with its metabolic activation. Crystal structures of human histidine triad nucleotide binding protein 1, adenosine deaminase-like protein 1, guanylate kinase 1, and nucleoside diphosphate kinase at 2.09, 2.44, 1.76, and 1.9 Å resolution, respectively, with cognate precursors of AT-9010 illuminate the activation pathway from the orally available bemnifosbuvir to AT-9010, pointing to key drug-protein contacts along the activation pathway. Our work provides a framework to integrate the design of antiviral nucleotide analogues, confronting requirements and constraints associated with activation enzymes along the 5'-triphosphate assembly line.
Assuntos
Antivirais , Antivirais/farmacologia , Antivirais/química , Humanos , Cristalografia por Raios X , Modelos Moleculares , Núcleosídeo-Difosfato Quinase/metabolismo , Núcleosídeo-Difosfato Quinase/química , Núcleosídeo-Difosfato Quinase/genética , Guanosina/análogos & derivados , Guanosina/metabolismo , Guanosina/químicaRESUMO
Nucleotide analogues (NA) are currently employed for treatment of several viral diseases, including COVID-19. NA prodrugs are intracellularly activated to the 5'-triphosphate form. They are incorporated into the viral RNA by the viral polymerase (SARS-CoV-2 nsp12), terminating or corrupting RNA synthesis. For Coronaviruses, natural resistance to NAs is provided by a viral 3'-to-5' exonuclease heterodimer nsp14/nsp10, which can remove terminal analogues. Here, we show that the replacement of the α-phosphate of Bemnifosbuvir 5'-triphosphate form (AT-9010) by an α-thiophosphate renders it resistant to excision. The resulting α-thiotriphosphate, AT-9052, exists as two epimers (RP/SP). Through co-crystallization and activity assays, we show that the Sp isomer is preferentially used as a substrate by nucleotide diphosphate kinase (NDPK), and by SARS-CoV-2 nsp12, where its incorporation causes immediate chain-termination. The same -Sp isomer, once incorporated by nsp12, is also totally resistant to the excision by nsp10/nsp14 complex. However, unlike AT-9010, AT-9052-RP/SP no longer inhibits the N-terminal nucleotidylation domain of nsp12. We conclude that AT-9052-Sp exhibits a unique mechanism of action against SARS-CoV-2. Moreover, the thio modification provides a general approach to rescue existing NAs whose activity is hampered by coronavirus proofreading capacity.
Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , COVID-19 , Polifosfatos , SARS-CoV-2 , Humanos , Antivirais/farmacologia , Antivirais/química , COVID-19/virologia , Exonucleases , Nucleotídeos/metabolismo , Nucleotidiltransferases , RNA Viral/genética , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/genética , RNA-Polimerase RNA-Dependente de Coronavírus/metabolismoRESUMO
Every year, millions of people worldwide are infected with dengue virus (DENV), with a significant number developing severe life-threatening disease. There are currently no broadly indicated vaccines or therapeutics available for treatment of DENV infection. Here, we show that AT-281, the free base of AT-752, an orally available double prodrug of a guanosine nucleotide analog, was a potent inhibitor of DENV serotypes 2 and 3 in vitro, requiring concentrations of 0.48 and 0.77 µM, respectively, to inhibit viral replication by 50% (EC50) in Huh-7 cells. AT-281 was also a potent inhibitor of all other flaviviruses tested, with EC50 values ranging from 0.19 to 1.41 µM. Little to no cytotoxicity was observed for AT-281 at concentrations up to 170 µM. After oral administration of AT-752, substantial levels of the active triphosphate metabolite AT-9010 were formed in vivo in peripheral blood mononuclear cells of mice, rats, and monkeys. Furthermore, AT-9010 competed with GTP in RNA template-primer elongation assays with DENV2 RNA polymerase, which is essential for viral replication, with incorporation of AT-9010 resulting in termination of RNA synthesis. In AG129 mice infected with DENV D2Y98P, treatment with AT-752 significantly reduced viremia and morbidity and increased survival. The demonstrated in vitro and in vivo activity of AT-752 suggests that it is a promising compound for the treatment of dengue virus infection and is currently under evaluation in clinical studies.
Assuntos
Vírus da Dengue , Dengue , Flavivirus , Pró-Fármacos , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Dengue/tratamento farmacológico , Guanosina/farmacologia , Guanosina/uso terapêutico , Leucócitos Mononucleares , Camundongos , Nucleotídeos/uso terapêutico , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Ratos , Replicação ViralRESUMO
The impact of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the causative agent of COVID-19, is global and unprecedented. Although remdesivir has recently been approved by the FDA to treat SARS-CoV-2 infection, no oral antiviral is available for outpatient treatment. AT-527, an orally administered double prodrug of a guanosine nucleotide analog, was previously shown to be highly efficacious and well tolerated in hepatitis C virus (HCV)-infected subjects. Here, we report the potent in vitro activity of AT-511, the free base of AT-527, against several coronaviruses, including SARS-CoV-2. In normal human airway epithelial cells, the concentration of AT-511 required to inhibit replication of SARS-CoV-2 by 90% (EC90) was 0.47 µM, very similar to its EC90 against human coronavirus (HCoV)-229E, HCoV-OC43, and SARS-CoV in Huh-7 cells. Little to no cytotoxicity was observed for AT-511 at concentrations up to 100 µM. Substantial levels of the active triphosphate metabolite AT-9010 were formed in normal human bronchial and nasal epithelial cells incubated with 10 µM AT-511 (698 ± 15 and 236 ± 14 µM, respectively), with a half-life of at least 38 h. Results from steady-state pharmacokinetic and tissue distribution studies of nonhuman primates administered oral doses of AT-527, as well as pharmacokinetic data from subjects given daily oral doses of AT-527, predict that twice daily oral doses of 550 mg AT-527 will produce AT-9010 trough concentrations in human lung that exceed the EC90 observed for the prodrug against SARS-CoV-2 replication. This suggests that AT-527 may be an effective treatment option for COVID-19.
Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Guanosina Monofosfato/análogos & derivados , Guanosina/farmacologia , Fosforamidas/farmacologia , Pró-Fármacos/farmacologia , SARS-CoV-2/efeitos dos fármacos , Administração Oral , Animais , COVID-19/virologia , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Coronavirus Humano 229E/metabolismo , Coronavirus Humano OC43/metabolismo , Cricetinae , Células Epiteliais/virologia , Guanosina Monofosfato/farmacologia , Humanos , Pulmão/virologia , SARS-CoV-2/metabolismo , Células Vero , Replicação Viral/efeitos dos fármacosRESUMO
Nowadays, autonomous vehicles have achieved a lot of research interest regarding the navigation, the surrounding environmental perception, and control. Global Navigation Satellite System/Inertial Navigation System (GNSS/INS) is one of the significant components of any vehicle navigation system. However, GNSS has limitations in some operating scenarios such as urban regions and indoor environments where the GNSS signal suffers from multipath or outage. On the other hand, INS standalone navigation solution degrades over time due to the INS errors. Therefore, a modern vehicle navigation system depends on integration between different sensors to aid INS for mitigating its drift during GNSS signal outage. However, there are some challenges for the aiding sensors related to their high price, high computational costs, and environmental and weather effects. This paper proposes an integrated aiding navigation system for vehicles in an indoor environment (e.g., underground parking). This proposed system is based on optical flow and multiple mass flow sensors integrations to aid the low-cost INS by providing the navigation extended Kalman filter (EKF) with forward velocity and change of heading updates to enhance the vehicle navigation. The optical flow is computed for frames taken using a consumer portable device (CPD) camera mounted in the upward-looking direction to avoid moving objects in front of the camera and to exploit the typical features of the underground parking or tunnels such as ducts and pipes. On the other hand, the multiple mass flow sensors measurements are modeled to provide forward velocity information. Moreover, a mass flow differential odometry is proposed where the vehicle change of heading is estimated from the multiple mass flow sensors measurements. This integrated aiding system can be used for unmanned aerial vehicles (UAV) and land vehicle navigations. However, the experimental results are implemented for land vehicles through the integration of CPD with mass flow sensors to aid the navigation system.
RESUMO
AT-527 is a novel modified guanosine nucleotide prodrug inhibitor of the hepatitis C virus (HCV) NS5B polymerase, with increased in vitro antiviral activity as compared to sofosbuvir and a highly differentiated favorable preclinical profile compared to other anti-HCV nucleoside/nucleotide analogs. This was a multiple part clinical study where multiple ascending doses of AT-527 up to 600 mg (expressed as AT-527 salt form; equivalent to 553 mg free base) once daily for seven days were evaluated in a randomized, double-blind, placebo-controlled study of treatment-naïve, non-cirrhotic, genotype 1b, HCV-infected subjects. The highest dose of AT-527 for the same duration was then evaluated in two open label cohorts of a) non-cirrhotic, genotype 3, HCV-infected subjects and b) HCV-infected subjects of any genotype with compensated (Child-Pugh A) cirrhosis. AT-527 was well tolerated for seven days in all cohorts. At the highest dose tested, mean HCV RNA reductions of up to 2.4 log10 IU/mL occurred within the first 24 hours of dosing. Mean maximum reductions observed with seven days of dosing were 4.4, 4.5 and 4.6 log10 IU/mL in non-cirrhotic subjects with HCV genotype 1b, non-cirrhotic subjects with HCV genotype 3, and subjects with compensated cirrhosis, respectively. The systemic half-life of AT-273, the nucleoside metabolite considered a surrogate of intracellular phosphates including the active triphosphate, exceeded 20 hours, supporting once daily dosing. In summary, AT-527 demonstrated rapid, potent, dose/exposure-related and pan-genotypic antiviral activity with similar responses between subjects with and without cirrhosis. Exposure-antiviral response analysis identified 550 mg (free base equivalent) as the optimal dose of AT-527. Safety and antiviral activity data from this study warrant continued clinical development of AT-527 dosed once daily.
RESUMO
Recently, land vehicle navigation, and especially by the use of low-cost sensors, has been the object of a huge level of research interest. Consumer Portable Devices (CPDs) such as tablets and smartphones are being widely used by many consumers all over the world. CPDs contain sensors (accelerometers, gyroscopes, magnetometer, etc.) that can be used for many land vehicle applications such as navigation. This paper presents a novel approach for estimating steering wheel angles using CPD accelerometers by attaching CPDs to the steering wheel. The land vehicle change of heading is then computed from the estimated steering wheel angle. The calculated change of heading is used to update the navigation filter to aid the onboard Inertial Measurement Unit (IMU) through the use of an Extended Kalman Filter (EKF) in GNSS-denied environments. Four main factors that may affect the steering wheel angle accuracy are considered and modeled during steering angle estimations: static onboard IMU leveling, inclination angle of the steering wheel, vehicle acceleration, and vehicle inclination. In addition, these factors are assessed for their effects on the final result. Therefore, three methods are proposed for steering angle estimation: non-compensated, partially-compensated, and fully-compensated methods. A road experimental test was carried out using a Pixhawk (PX4) navigation system, iPad Air, and the OBD-II interface. The average Root Mean Square Error (RMSE) of the change of heading estimated by the proposed method was 0.033 rad/s. A navigation solution was estimated while changes of heading and forward velocity updates were used to aid the IMU during different GNSS signal outages. The estimated navigation solution is enhanced when applying the proposed updates to the navigation filter by 91% and 97% for 60 s and 120 s of GNSS signal outage, respectively, compared to the IMU standalone solution.
RESUMO
Drones are becoming increasingly significant for vast applications, such as firefighting, and rescue. While flying in challenging environments, reliable Global Navigation Satellite System (GNSS) measurements cannot be guaranteed all the time, and the Inertial Navigation System (INS) navigation solution will deteriorate dramatically. Although different aiding sensors, such as cameras, are proposed to reduce the effect of these drift errors, the positioning accuracy by using these techniques is still affected by some challenges, such as the lack of the observed features, inconsistent matches, illumination, and environmental conditions. This paper presents an integrated navigation system for Unmanned Aerial Vehicles (UAVs) in GNSS denied environments based on a Radar Odometry (RO) and an enhanced Visual Odometry (VO) to handle such challenges since the radar is immune against these issues. The estimated forward velocities of a vehicle from both the RO and the enhanced VO are fused with the Inertial Measurement Unit (IMU), barometer, and magnetometer measurements via an Extended Kalman Filter (EKF) to enhance the navigation accuracy during GNSS signal outages. The RO and VO are integrated into one integrated system to help overcome their limitations, since the RO measurements are affected while flying over non-flat terrain. Therefore, the integration of the VO is important in such scenarios. The experimental results demonstrate the proposed system's ability to significantly enhance the 3D positioning accuracy during the GNSS signal outage.
RESUMO
Unmanned aerial vehicles represent an effective technology for indoor search and rescue operations. Typically, most indoor missions' environments would be unknown, unstructured, and/or dynamic. Navigation of UAVs in such environments is addressed by simultaneous localization and mapping approach using either local or global approaches. Both approaches suffer from accumulated errors and high processing time due to the iterative nature of the scan matching method. Moreover, point-to-point scan matching is prone to outlier association processes. This paper proposes a low-cost novel method for 2D real-time scan matching based on a reference key frame (RKF). RKF is a hybrid scan matching technique comprised of feature-to-feature and point-to-point approaches. This algorithm aims at mitigating errors accumulation using the key frame technique, which is inspired from video streaming broadcast process. The algorithm depends on the iterative closest point algorithm during the lack of linear features which is typically exhibited in unstructured environments. The algorithm switches back to the RKF once linear features are detected. To validate and evaluate the algorithm, the mapping performance and time consumption are compared with various algorithms in static and dynamic environments. The performance of the algorithm exhibits promising navigational, mapping results and very short computational time, that indicates the potential use of the new algorithm with real-time systems.
RESUMO
Landslides are major and constantly changing threats to urban landscapes and infrastructure. It is essential to detect and capture landslide changes regularly. Traditional methods for monitoring landslides are time-consuming, costly, dangerous, and the quality and quantity of the data is sometimes unable to meet the necessary requirements of geotechnical projects. This motivates the development of more automatic and efficient remote sensing approaches for landslide progression evaluation. Automatic change detection involving low-altitude unmanned aerial vehicle image-based point clouds, although proven, is relatively unexplored, and little research has been done in terms of accounting for volumetric changes. In this study, a methodology for automatically deriving change displacement rates, in a horizontal direction based on comparisons between extracted landslide scarps from multiple time periods, has been developed. Compared with the iterative closest projected point (ICPP) registration method, the developed method takes full advantage of automated geometric measuring, leading to fast processing. The proposed approach easily processes a large number of images from different epochs and enables the creation of registered image-based point clouds without the use of extensive ground control point information or further processing such as interpretation and image correlation. The produced results are promising for use in the field of landslide research.
RESUMO
Construction of protected 2,3-dideoxy-2-fluoro-2,3-endo-methylene-pentofuranoses from d-glyceraldehyde and 2,3-dideoxy-2-fluoro-3-C-hydroxymethyl-2,3-endo-methylene-pentofuranoses from d-isoascorbic acid, via Simmons-Smith-type stereoselective cyclopropanations on the respective fluoroallyl alcohols, is described. Synthesis of the corresponding conformationally locked sugar modified uridine and guanosine nucleosides was achieved via Vorbrüggen or Mitsunobu methodologies. Stereochemical confirmation of the novel nucleosides was performed on the basis of 2D NOESY NMR experiments. Analysis of 2',3'-dideoxy-2'-fluoro-3'-C-hydroxymethyl-2',3'-endo-methylene-uridine by X-ray crystallography yielded the principal conformational parameters and indicated that the furanoid ring adopted an (o)E/(o)T1, East pucker. The uridine and guanosine nucleosides were found to be inactive in the hepatitis C virus (HCV) cell-based replicon assay, which was corroborated on examination of the corresponding nucleoside triphosphates against the HCV NS5B polymerase.
RESUMO
The synthesis of 2'-O,4'-C-methylene-bridged bicyclic guanine ribonucleosides bearing 2'-C-methyl or 5'-C-methyl modifications is described. Key to the successful installation of the methyl functionality in both cases was the use of a one-pot oxidation-Grignard procedure to avoid formation of the respective unreactive hydrates prior to alkylation. The 2'-C-methyl- and 5'-C-methyl-modified bicyclic guanosines were evaluated, along with the known uracil-, cytosine-, adenine-, guanine-LNA and guanine-ENA nucleosides, as potential antiviral agents and found to be inactive in the hepatitis C virus (HCV) cell-based replicon assay. Examination of the corresponding nucleoside triphosphates, however, against the purified HCV NS5B polymerase indicated that LNA-G and 2'-C-methyl-LNA-G are potent inhibitors of both 1b wild type and S282T mutant enzymes in vitro. Activity was further demonstrated for the LNA-G-triphosphate against HCV NS5B polymerase genotypes 1a, 2a, 3a and 4a. A phosphorylation by-pass prodrug strategy may be required to promote anti-HCV activity in the replicon assay.
Assuntos
Hepacivirus/enzimologia , Inibidores da Síntese de Ácido Nucleico/síntese química , Inibidores da Síntese de Ácido Nucleico/farmacologia , Ribonucleosídeos/síntese química , Ribonucleosídeos/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Ativação Enzimática/efeitos dos fármacos , Hepacivirus/efeitos dos fármacos , Estrutura Molecular , Ribonucleosídeos/químicaRESUMO
Context-awareness is an interesting topic in mobile navigation scenarios where the context of the application is highly dynamic. Using context-aware computing, navigation services consider the situation of user, not only in the design process, but in real time while the device is in use. The basic idea is that mobile navigation services can provide different services based on different contexts-where contexts are related to the user's activity and the device placement. Context-aware systems are concerned with the following challenges which are addressed in this paper: context acquisition, context understanding, and context-aware application adaptation. The proposed approach in this paper is using low-cost sensors in a multi-level fusion scheme to improve the accuracy and robustness of context-aware navigation system. The experimental results demonstrate the capabilities of the context-aware Personal Navigation Systems (PNS) for outdoor personal navigation using a smartphone.
Assuntos
Acelerometria/instrumentação , Conscientização , Telefone Celular , Navegação Espacial , Algoritmos , Lógica Fuzzy , Sistemas de Informação Geográfica , Humanos , Fatores de Tempo , Visão OcularRESUMO
INTRODUCTION: Chronic hepatitis C virus (HCV) persists as a public health concern worldwide. Consequently, optimizing HCV therapy remains an important objective. While current therapies are generally highly effective, advanced antiviral agents are needed to maximize cure rates with potentially shorter treatment durations in a broader patient population, particularly those patients with advanced diseases who remain difficult to treat. AREAS COVERED: This review summarizes the in vitro anti-HCV activity, preclinical pharmacological properties of bemnifosbuvir (BEM, AT-527), a novel prodrug that is metabolically converted to AT-9010, the active guanosine triphosphate analogue that potently and selectively inhibits several viral RNA polymerases, including the HCV NS5B polymerase. Results from clinical proof-of-concept and phase 2 combination studies are also discussed. EXPERT OPINION: BEM exhibits potent pan-genotype activity against HCV, and has favorable safety, and drug interaction profiles. BEM is approximately 10-fold more potent than sofosbuvir against HCV genotypes (GT) tested in vitro. When combined with a potent NS5A inhibitor, BEM is expected to be a promising once-daily oral antiviral for chronic HCV infection of all genotypes and fibrosis stages with potentially short treatment durations.
Assuntos
Guanosina Monofosfato/análogos & derivados , Hepatite C Crônica , Hepatite C , Fosforamidas , Humanos , Hepacivirus , Hepatite C Crônica/tratamento farmacológico , Antivirais/efeitos adversos , Sofosbuvir/farmacologia , Sofosbuvir/uso terapêutico , Hepatite C/tratamento farmacológico , Genótipo , Quimioterapia Combinada , Proteínas não Estruturais ViraisRESUMO
AT-752 is a guanosine analogue prodrug active against dengue virus (DENV). In infected cells, it is metabolized into 2'-methyl-2'-fluoro guanosine 5'-triphosphate (AT-9010) which inhibits RNA synthesis in acting as a RNA chain terminator. Here we show that AT-9010 has several modes of action on DENV full-length NS5. AT-9010 does not inhibit the primer pppApG synthesis step significantly. However, AT-9010 targets two NS5-associated enzyme activities, the RNA 2'-O-MTase and the RNA-dependent RNA polymerase (RdRp) at its RNA elongation step. Crystal structure and RNA methyltransferase (MTase) activities of the DENV 2 MTase domain in complex with AT-9010 at 1.97 Å resolution shows the latter bound to the GTP/RNA-cap binding site, accounting for the observed inhibition of 2'-O but not N7-methylation activity. AT-9010 is discriminated â¼10 to 14-fold against GTP at the NS5 active site of all four DENV1-4 NS5 RdRps, arguing for significant inhibition through viral RNA synthesis termination. In Huh-7 cells, DENV1-4 are equally sensitive to AT-281, the free base of AT-752 (EC50 ≈ 0.50 µM), suggesting broad spectrum antiviral properties of AT-752 against flaviviruses.
Assuntos
Vírus da Dengue , Dengue , Humanos , Dengue/tratamento farmacológico , Vírus da Dengue/fisiologia , Guanosina/farmacologia , Guanosina/metabolismo , Guanosina Trifosfato/metabolismo , RNA Viral/metabolismo , Proteínas não Estruturais Virais/genética , Replicação ViralRESUMO
Yellow fever virus (YFV) is a zoonotic pathogen re-emerging in parts of the world, causing a viral hemorrhagic fever associated with high mortality rates. While an effective vaccine is available, having an effective antiviral against YFV is critical against unexpected outbreaks, or when vaccination is not recommended. We have previously identified AT-281, the free base of AT-752, an orally available double prodrug of a guanosine nucleotide analog, as a potent inhibitor of YFV in vitro, with a 50% effective concentration (EC50) of 0.31 µM. In hamsters infected with YFV (Jimenez strain), viremia rose about 4 log10-fold and serum alanine aminotransferase (ALT) 2-fold compared to sham-infected animals. Treatment with 1000 mg/kg AT-752 for 7 days, initiated 4 h prior to viral challenge, reduced viremia to below the limit of detection by day 4 post infection (pi) and returned ALT to normal levels by day 6 pi. When treatment with AT-752 was initiated 2 days pi, the virus titer and ALT dropped >2 log10 and 53% by day 4 and 6 pi, respectively. In addition, at 21 days pi, 70-100% of the infected animals in the treatment groups survived compared to 0% of the untreated group (p<0.001). Moreover, in vivo formation of the active triphosphate metabolite AT-9010 was measured in the animal tissues, with the highest concentrations in liver and kidney, organs that are vulnerable to the virus. The demonstrated in vivo activity of AT-752 suggests that it is a promising compound for clinical development in the treatment of YFV infection.
Assuntos
Antivirais/farmacologia , Guanosina/análogos & derivados , Pró-Fármacos/farmacologia , Febre Amarela/tratamento farmacológico , Vírus da Febre Amarela/efeitos dos fármacos , Animais , Antivirais/química , Antivirais/farmacocinética , Chlorocebus aethiops , Cricetinae , Feminino , Masculino , Mesocricetus , Pró-Fármacos/química , Pró-Fármacos/farmacocinética , Células Vero , Viremia , Febre Amarela/virologiaRESUMO
The guanosine analog AT-527 represents a promising candidate against Severe Acute Respiratory Syndrome coronavirus type 2 (SARS-CoV-2). AT-527 recently entered phase III clinical trials for the treatment of COVID-19. Once in cells, AT-527 is converted into its triphosphate form, AT-9010, that presumably targets the viral RNA-dependent RNA polymerase (RdRp, nsp12), for incorporation into viral RNA. Here we report a 2.98 Å cryo-EM structure of the SARS-CoV-2 nsp12-nsp7-nsp82-RNA complex, showing AT-9010 bound at three sites of nsp12. In the RdRp active-site, one AT-9010 is incorporated at the 3' end of the RNA product strand. Its modified ribose group (2'-fluoro, 2'-methyl) prevents correct alignment of the incoming NTP, in this case a second AT-9010, causing immediate termination of RNA synthesis. The third AT-9010 is bound to the N-terminal domain of nsp12 - known as the NiRAN. In contrast to native NTPs, AT-9010 is in a flipped orientation in the active-site, with its guanine base unexpectedly occupying a previously unnoticed cavity. AT-9010 outcompetes all native nucleotides for NiRAN binding, inhibiting its nucleotidyltransferase activity. The dual mechanism of action of AT-527 at both RdRp and NiRAN active sites represents a promising research avenue against COVID-19.
Assuntos
Antivirais/química , Antivirais/farmacologia , Guanosina Monofosfato/análogos & derivados , Fosforamidas/química , Fosforamidas/farmacologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , SARS-CoV-2/enzimologia , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/metabolismo , COVID-19/virologia , Microscopia Crioeletrônica , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Guanosina Monofosfato/química , Guanosina Monofosfato/farmacologia , Humanos , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , SARS-CoV-2/química , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , Proteínas Virais/genéticaRESUMO
Despite the availability of highly effective direct-acting antiviral (DAA) regimens for the treatment of hepatitis C virus (HCV) infections, sustained viral response (SVR) rates remain suboptimal for difficult-to-treat patient populations such as those with HCV genotype 3, cirrhosis or prior treatment experience, warranting development of more potent HCV replication antivirals. AT-527 is the hemi-sulfate salt of AT-511, a novel phosphoramidate prodrug of 2'-fluoro-2'-C-methylguanosine-5'-monophosphate that has potent in vitro activity against HCV. The EC50 of AT-511, determined using HCV laboratory strains and clinical isolates with genotypes 1-5, ranged from 5-28 nM. The active 5'-triphosphate metabolite, AT-9010, specifically inhibited the HCV RNA-dependent RNA polymerase. AT-511 did not inhibit the replication of other selected RNA or DNA viruses in vitro. AT-511 was approximately 10-fold more active than sofosbuvir (SOF) against a panel of laboratory strains and clinical isolates of HCV genotypes 1-5 and remained fully active against S282T resistance-associated variants, with up to 58-fold more potency than SOF. In vitro, AT-511 did not inhibit human DNA polymerases or elicit cytotoxicity or mitochondrial toxicity at concentrations up to 100 µM. Unlike the other potent guanosine analogs PSI-938 and PSI-661, no mutagenic O6-alkylguanine bases were formed when incubated with cytochrome P450 (CYP) 3A4, and AT-511 had IC50 values ≥25 µM against a panel of CYP enzymes. In hepatocytes from multiple species, the active triphosphate was the predominant metabolite produced from the prodrug, with a half-life of 10 h in human hepatocytes. When given orally to rats and monkeys, AT-527 preferentially delivered high levels of AT-9010 in the liver in vivo. These favorable preclinical attributes support the ongoing clinical development of AT-527 and suggest that, when used in combination with an HCV DAA from a different class, AT-527 may increase SVR rates, especially for difficult-to-treat patient populations, and could potentially shorten treatment duration for all patients.
Assuntos
Antivirais/farmacologia , Guanosina/farmacologia , Hepacivirus/efeitos dos fármacos , Hepatite C/tratamento farmacológico , Pró-Fármacos/farmacologia , Animais , Antivirais/química , Antivirais/metabolismo , Antivirais/farmacocinética , Linhagem Celular , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Feminino , Guanosina/análogos & derivados , Guanosina/metabolismo , Guanosina/farmacocinética , Haplorrinos , Hepacivirus/genética , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/virologia , Humanos , Masculino , Camundongos , Pró-Fármacos/química , Pró-Fármacos/metabolismo , Pró-Fármacos/farmacocinética , RatosRESUMO
Position statement: The International Society of Sports Nutrition (ISSN) provides an objective and critical review of the mechanisms and use of probiotic supplementation to optimize the health, performance, and recovery of athletes. Based on the current available literature, the conclusions of the ISSN are as follows: 1)Probiotics are live microorganisms that, when administered in adequate amounts, confer a health benefit on the host (FAO/WHO).2)Probiotic administration has been linked to a multitude of health benefits, with gut and immune health being the most researched applications.3)Despite the existence of shared, core mechanisms for probiotic function, health benefits of probiotics are strain- and dose-dependent.4)Athletes have varying gut microbiota compositions that appear to reflect the activity level of the host in comparison to sedentary people, with the differences linked primarily to the volume of exercise and amount of protein consumption. Whether differences in gut microbiota composition affect probiotic efficacy is unknown.5)The main function of the gut is to digest food and absorb nutrients. In athletic populations, certain probiotics strains can increase absorption of key nutrients such as amino acids from protein, and affect the pharmacology and physiological properties of multiple food components.6)Immune depression in athletes worsens with excessive training load, psychological stress, disturbed sleep, and environmental extremes, all of which can contribute to an increased risk of respiratory tract infections. In certain situations, including exposure to crowds, foreign travel and poor hygiene at home, and training or competition venues, athletes' exposure to pathogens may be elevated leading to increased rates of infections. Approximately 70% of the immune system is located in the gut and probiotic supplementation has been shown to promote a healthy immune response. In an athletic population, specific probiotic strains can reduce the number of episodes, severity and duration of upper respiratory tract infections.7)Intense, prolonged exercise, especially in the heat, has been shown to increase gut permeability which potentially can result in systemic toxemia. Specific probiotic strains can improve the integrity of the gut-barrier function in athletes.8)Administration of selected anti-inflammatory probiotic strains have been linked to improved recovery from muscle-damaging exercise.9)The minimal effective dose and method of administration (potency per serving, single vs. split dose, delivery form) of a specific probiotic strain depends on validation studies for this particular strain. Products that contain probiotics must include the genus, species, and strain of each live microorganism on its label as well as the total estimated quantity of each probiotic strain at the end of the product's shelf life, as measured by colony forming units (CFU) or live cells.10)Preclinical and early human research has shown potential probiotic benefits relevant to an athletic population that include improved body composition and lean body mass, normalizing age-related declines in testosterone levels, reductions in cortisol levels indicating improved responses to a physical or mental stressor, reduction of exercise-induced lactate, and increased neurotransmitter synthesis, cognition and mood. However, these potential benefits require validation in more rigorous human studies and in an athletic population.
Assuntos
Probióticos , Ciências da Nutrição e do Esporte , Atletas , Desempenho Atlético , Composição Corporal , Exercício Físico , Microbioma Gastrointestinal , Humanos , Sociedades MédicasRESUMO
Chlorination of 3-fluoro-2-methyl-aniline with N-chloro-succinimide gave one major regioisomer whose structure was determined by X-ray crystallography. The product was found to have cocrystallized with succinimide, giving the title compound, C(7)H(7)ClFN·C(4)H(5)NO(2). The crystal structure is stabilized by N-Hâ¯O hydrogen-bonding and π-π stacking inter-actions with a centroid-centroid distance of 3.4501â (8)â Å.