Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
IEEE Access ; 12: 49122-49133, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38994038

RESUMO

There is a tendency for object detection systems using off-the-shelf algorithms to fail when deployed in complex scenes. The present work describes a case for detecting facial expression in post-surgical neonates (newborns) as a modality for predicting and classifying severe pain in the Neonatal Intensive Care Unit (NICU). Our initial testing showed that both an off-the-shelf face detector and a machine learning algorithm trained on adult faces failed to detect facial expression of neonates in the NICU. We improved accuracy in this complex scene by training a state-of-the-art "You-Only-Look-Once" (YOLO) face detection model using the USF-MNPAD-I dataset of neonate faces. At run-time our trained YOLO model showed a difference of 8.6% mean Average Precision (mAP) and 21.2% Area under the ROC Curve (AUC) for automatic classification of neonatal pain compared with manual pain scoring by NICU nurses. Given the challenges, time and effort associated with collecting ground truth from the faces of post-surgical neonates, here we share the weights from training our YOLO model with these facial expression data. These weights can facilitate the further development of accurate strategies for detecting facial expression, which can be used to predict the time to pain onset in combination with other sensory modalities (body movements, crying frequency, vital signs). Reliable predictions of time to pain onset in turn create a therapeutic window of time wherein NICU nurses and providers can implement safe and effective strategies to mitigate severe pain in this vulnerable patient population.

2.
Neurotoxicol Teratol ; 102: 107336, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38402997

RESUMO

Microglial cells mediate diverse homeostatic, inflammatory, and immune processes during normal development and in response to cytotoxic challenges. During these functional activities, microglial cells undergo distinct numerical and morphological changes in different tissue volumes in both rodent and human brains. However, it remains unclear how these cytostructural changes in microglia correlate with region-specific neurochemical functions. To better understand these relationships, neuroscientists need accurate, reproducible, and efficient methods for quantifying microglial cell number and morphologies in histological sections. To address this deficit, we developed a novel deep learning (DL)-based classification, stereology approach that links the appearance of Iba1 immunostained microglial cells at low magnification (20×) with the total number of cells in the same brain region based on unbiased stereology counts as ground truth. Once DL models are trained, total microglial cell numbers in specific regions of interest can be estimated and treatment groups predicted in a high-throughput manner (<1 min) using only low-power images from test cases, without the need for time and labor-intensive stereology counts or morphology ratings in test cases. Results for this DL-based automatic stereology approach on two datasets (total 39 mouse brains) showed >90% accuracy, 100% percent repeatability (Test-Retest) and 60× greater efficiency than manual stereology (<1 min vs. ∼ 60 min) using the same tissue sections. Ongoing and future work includes use of this DL-based approach to establish clear neurodegeneration profiles in age-related human neurological diseases and related animal models.


Assuntos
Aprendizado Profundo , Microglia , Animais , Camundongos , Humanos , Encéfalo/patologia , Contagem de Células/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa