Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Malar J ; 20(1): 227, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34016100

RESUMO

BACKGROUND: The over-distributed pattern of malaria transmission has led to attempts to define malaria "hotspots" that could be targeted for purposes of malaria control in Africa. However, few studies have investigated the use of routine health facility data in the more stable, endemic areas of Africa as a low-cost strategy to identify hotspots. Here the objective was to explore the spatial and temporal dynamics of fever positive rapid diagnostic test (RDT) malaria cases routinely collected along the Kenyan Coast. METHODS: Data on fever positive RDT cases between March 2018 and February 2019 were obtained from patients presenting to six out-patients health-facilities in a rural area of Kilifi County on the Kenyan Coast. To quantify spatial clustering, homestead level geocoded addresses were used as well as aggregated homesteads level data at enumeration zone. Data were sub-divided into quarterly intervals. Kulldorff's spatial scan statistics using Bernoulli probability model was used to detect hotspots of fever positive RDTs across all ages, where cases were febrile individuals with a positive test and controls were individuals with a negative test. RESULTS: Across 12 months of surveillance, there were nine significant clusters that were identified using the spatial scan statistics among RDT positive fevers. These clusters included 52% of all fever positive RDT cases detected in 29% of the geocoded homesteads in the study area. When the resolution of the data was aggregated at enumeration zone (village) level the hotspots identified were located in the same areas. Only two of the nine hotspots were temporally stable accounting for 2.7% of the homesteads and included 10.8% of all fever positive RDT cases detected. CONCLUSION: Taking together the temporal instability of spatial hotspots and the relatively modest fraction of the malaria cases that they account for; it would seem inadvisable to re-design the sub-county control strategies around targeting hotspots.


Assuntos
Instalações de Saúde/estatística & dados numéricos , Malária/epidemiologia , Conglomerados Espaço-Temporais , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Quênia/epidemiologia , Masculino , Pessoa de Meia-Idade , Prevalência , Adulto Jovem
2.
Malar J ; 19(1): 210, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32552891

RESUMO

BACKGROUND: Malaria transmission has recently fallen in many parts of Africa, but systematic descriptions of infection and disease across all age groups are rare. Here, an epidemiological investigation of parasite prevalence, the incidence of fevers associated with infection, severe hospitalized disease and mortality among children older than 6 months and adults on the Kenyan coast is presented. METHODS: A prospective fever surveillance was undertaken at 6 out-patients (OPD) health-facilities between March 2018 and February 2019. Four community-based, cross sectional surveys of fever history and infection prevalence were completed among randomly selected homestead members from the same communities. Paediatric and adult malaria at Kilifi county hospital was obtained for the 12 months period. Rapid Diagnostic Tests (CareStart™ RDT) to detect HRP2-specific to Plasmodium falciparum was used in the community and the OPD, and microscopy in the hospital. Crude and age-specific incidence rates were computed using Poisson regression. RESULTS: Parasite prevalence gradually increased from childhood, reaching 12% by 9 years of age then declining through adolescence into adulthood. The incidence rate of RDT positivity in the OPD followed a similar trend to that of infection prevalence in the community. The incidence of hospitalized malaria from the same community was concentrated among children aged 6 months to 4 years (i.e. 64% and 70% of all hospitalized and severe malaria during the 12 months of surveillance, respectively). Only 3.7% (12/316) of deaths were directly attributable to malaria. Malaria mortality was highest among children aged 6 months-4 years at 0.57 per 1000 person-years (95% CI 0.2, 1.2). Severe malaria and death from malaria was negligible above 15 years of age. CONCLUSION: Under conditions of low transmission intensity, immunity to disease and the fatal consequences of infection appear to continue to be acquired in childhood and faster than anti-parasitic immunity. There was no evidence of an emerging significant burden of severe malaria or malaria mortality among adults. This is contrary to current modelled approaches to disease burden estimation in Africa and has important implications for the targeting of infection prevention strategies based on chemoprevention or vector control.


Assuntos
Febre/epidemiologia , Hospitalização/estatística & dados numéricos , Malária/epidemiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Estudos Transversais , Feminino , Febre/etiologia , Humanos , Incidência , Lactente , Quênia/epidemiologia , Malária/mortalidade , Malária/parasitologia , Masculino , Pessoa de Meia-Idade , Prevalência , Estudos Prospectivos , Adulto Jovem
3.
Trans R Soc Trop Med Hyg ; 116(10): 966-970, 2022 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-35415749

RESUMO

BACKGROUND: A study was conducted to examine the impact of long-lasting insecticide-treated net (LLIN) use on the prevalence of malaria infections across all ages, 25 y after a trial of insecticide-treated nets was conducted in the same area along the Kenyan coast. METHODS: The study comprised four community-based infection surveys and a simultaneous 12-month surveillance at six government outpatient health facilities (March 2018-February 2019). Logistic regression was used to examine the effect of LLIN use on malaria infections across all ages. RESULTS: There was a high level of reported LLIN use by the community (72%), notably among children <5 y of age (84%). Across all ages, the adjusted odds ratio of LLIN use against asymptomatic parasitaemia in community surveys was 0.45 (95% confidence interval [CI] 0.36 to 0.57; p<0.001) and against fevers associated with infection presenting to health facilities was 0.63 (95% CI 0.58 to 0.68; p<0.001). CONCLUSIONS: There was significant protection of LLIN use against malaria infections across all ages.


Assuntos
Mosquiteiros Tratados com Inseticida , Malária , Humanos , Quênia/epidemiologia , Malária/epidemiologia , Malária/prevenção & controle , Controle de Mosquitos
4.
PLoS One ; 15(10): e0240058, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33027313

RESUMO

INTRODUCTION: Malaria surveillance is a key pillar in the control of malaria in Africa. The value of using routinely collected data from health facilities to define malaria risk at community levels remains poorly defined. METHODS: Four cross-sectional parasite prevalence surveys were undertaken among residents at 36 enumeration zones in Kilifi county on the Kenyan coast and temporally and spatially matched to fever surveillance at 6 health facilities serving the same communities over 12 months. The age-structured functional form of the relationship between test positivity rate (TPR) and community-based parasite prevalence (PR) was explored through the development of regression models fitted by alternating the linear, exponential and polynomial terms for PR. The predictive ranges of TPR were explored for PR endemicity risk groups of control programmatic value using cut-offs of low (PR <5%) and high (PR ≥ 30%) transmission intensity. RESULTS: Among 28,134 febrile patients encountered for malaria diagnostic testing in the health facilities, 12,143 (43.2%: 95% CI: 42.6%, 43.7%) were positive. The overall community PR was 9.9% (95% CI: 9.2%, 10.7%) among 6,479 participants tested for malaria. The polynomial model was the best fitting model for the data that described the algebraic relationship between TPR and PR. In this setting, a TPR of ≥ 49% in all age groups corresponded to an age-standardized PR of ≥ 30%, while a TPR of < 40% corresponded to an age-standardized PR of < 5%. CONCLUSION: A non-linear relationship was observed between the relative change in TPR and changes in the PR, which is likely to have important implications for malaria surveillance programs, especially at the extremes of transmission. However, larger, more spatially diverse data series using routinely collected TPR data matched to community-based infection prevalence data are required to explore the more practical implications of using TPR as a replacement for community PR.


Assuntos
Malária/epidemiologia , Vigilância em Saúde Pública/métodos , Adolescente , Adulto , Criança , Pré-Escolar , Estudos Transversais , Feminino , Instalações de Saúde , Humanos , Lactente , Quênia/epidemiologia , Malária/diagnóstico , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Prevalência , Características de Residência , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa