Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(41): e2310714120, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37782794

RESUMO

The future application of Li metal batteries (LMBs) at scale demands electrolytes that endow improved performance under fast-charging and low-temperature operating conditions. Recent works indicate that desolvation kinetics of Li+ plays a crucial role in enabling such behavior. However, the modulation of this process has typically been achieved through inducing qualitative degrees of ion pairing into the system. In this work, we find that a more quantitative control of the ion pairing is crucial to minimizing the desolvation penalty at the electrified interface and thus the reversibility of the Li metal anode under kinetic strain. This effect is demonstrated in localized electrolytes based on strongly and weakly bound ether solvents that allow for the deconvolution of solvation chemistry and structure. Unexpectedly, we find that maximum degrees of ion pairing are suboptimal for ultralow temperature and high-rate operation and that reversibility is substantially improved via slight local dilution away from the saturation point. Further, we find that at the optimum degree of ion pairing for each system, weakly bound solvents still produce superior behavior. The impact of these structure and chemistry effects on charge transfer are then explicitly resolved via experimental and computational analyses. Lastly, we demonstrate that the locally optimized diethyl ether-based localized-high-concentration electrolytes supports kinetic strained operating conditions, including cycling down to -60 °C and 20-min fast charging in LMB full cells. This work demonstrates that explicit, quantitative optimization of the Li+ solvation state is necessary for developing LMB electrolytes capable of low-temperature and high-rate operation.

2.
Nano Lett ; 23(15): 7062-7069, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37522917

RESUMO

Nonaqueous fluidic transport and ion solvation properties under nanoscale confinement are poorly understood, especially in ion conduction for energy storage and conversion systems. Herein, metal-organic frameworks (MOFs) and aprotic electrolytes are studied as a robust platform for molecular-level insights into electrolyte behaviors in confined spaces. By employing computer simulations, along with spectroscopic and electrochemical measurements, we demonstrate several phenomena that deviate from the bulk, including modulated solvent molecular configurations, aggregated solvation structures, and tunable transport mechanisms from quasi-solid to quasi-liquid in functionalized MOFs. Technologically, taking advantage of confinement effects may prove useful for addressing stability concerns associated with volatile organic electrolytes while simultaneously endowing ultrafast transport of solvates, resulting in improved battery performance, even at extreme temperatures. The molecular-level insights presented here further our understanding of structure-property relationships of complex fluids at the nanoscale, information that can be exploited for the predictive design of more efficient electrochemical systems.

3.
J Am Chem Soc ; 142(1): 641-648, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31829014

RESUMO

Polyaniline derivatives represent one of the most widely used classes of conductive polymers. The fundamentally important electronic properties of pernigraniline salts, the fully oxidized and acid-doped derivatives of polyanilines, however, are still not well-understood due to their poor stability and configurational uncertainty. To address these issues and to synthetically access stable analogues of pernigraniline salts, ladder-type constitution was imparted into a series of model oligomer analogues with rigid backbones constituted by up to 27 fused rings. The syntheses were achieved through iterative cross-coupling reactions followed by cyclization and oxidation. In contrast to their unstable non-ladder-type counterparts, these ladder-type pernigraniline-like molecules all adopt a well-defined all-trans configuration and demonstrate an excellent chemical stability after protonation, rendering it possible to reveal the intrinsic electronic and magnetic properties of molecules resembling pernigraniline. Protonated salts of these oligomers feature a significant diradicaloid open-shell resonance contribution. A dominant temperature-independent Pauli paramagnetism was observed in the solid state, an indication of the delocalization nature of the polarons in ladder-type analogues of pernigraniline salt.

4.
J Am Chem Soc ; 140(51): 18173-18182, 2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30507169

RESUMO

The introduction of B ← N coordinate bond-isoelectronic to C-C single bond-into π-systems represents a promising strategy to impart exotic redox and electrochromic properties into conjugated organic molecules and macromolecules. To achieve both reductive and oxidative activities using this strategy, a cruciform ladder-type molecular constitution was designed to accommodate oxidation-active, reduction-active, and B ← N coordination units into a compact structure. Two such compounds (BN-F and BN-Ph) were synthesized via highly efficient N-directed borylation. These molecules demonstrated well-separated, two reductive and two oxidative electron-transfer processes, corresponding to five distinct yet stable oxidation states, including a rarely observed boron-containing radical cation. Spectroelectrochemical measurements revealed unique optical characteristics for each of these reduced/oxidized species, demonstrating multicolor electrochromism with excellent recyclability. Distinct color changes were observed between each redox state with clear isosbestic points on the absorption spectra. The underlying redox mechanism was elucidated by a combination of computational and experimental investigations. Single-crystal X-ray diffraction analysis on the neutral state, the oxidized radical cation, and the reduced dianion of BN-Ph revealed structural transformations into two distinct quinonoid constitutions during the oxidation and reduction processes, respectively. B ← N coordination played an important role in rendering the robust and reversible multistage redox properties, by extending the charge and spin delocalization, by modulating the π-electron density, and by a newly established hyperconjugation mechanism.

5.
Chemistry ; 24(62): 16553-16557, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30089198

RESUMO

Macroscopic enantiomerically pure helical supramolecular fibers are bottom-up assembled in aqueous media from a chiral π-electron donor template and an achiral π-electron acceptor. The helices can be assembled to the sub-millimeter scale with controlled handedness. These dynamic supramolecular architectures allow for a quantitative exchange of the chiral donor template with achiral analogues. During this process, a chiral memory effect was observed, affording enantiomerically pure helices composed entirely of achiral components.

6.
Angew Chem Int Ed Engl ; 57(31): 9853-9858, 2018 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-29883017

RESUMO

In this work, a novel version of macrocyclic arenes, namely leaning pillar[6]arenes, was discovered and it can be considered as a tilted version of a pillar[6]arene with two hydroxy/alkoxy functionalities removed. Through a facile two-step synthetic approaches, in conjunction with a diversity of post-modification possibilities, a series of leaning pillar[6]arenes, with good cavity adaptability and enhanced guest-binding capability, was synthesized, and their self-assembly in single-crystal states is presented. DFT calculations demonstrated that the lower rotational barrier of unsubstituted phenylene rings, the uneven electron density centered at the leaning phenyl rings, and the polarization effect along the edge generated by the hydrogen-bond-induced orientation of hydroxy groups greatly affected the host-guest properties, and meanwhile provided an intuitive explanation for the pillar-like and rigid structure of traditional pillar[6]arenes. Significantly, the crystal structure of cyclo-oligomeric quinone was obtained by direct oxidation of leaning pillar[6]arenes.

7.
J Org Chem ; 81(10): 4347-52, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-27096728

RESUMO

Ladder-type conjugated molecules with a low band gap and low LUMO level were synthesized through an N-directed borylation reaction of pyrazine-derived donor-acceptor-donor precursors. The intramolecular boron-nitrogen coordination bonds played a key role in rendering the rigid and coplanar conformation of these molecules and their corresponding electronic structures. Experimental investigation and theoretical simulation revealed the dynamic nature of such coordination, which allowed for active manipulation of the optical properties of these molecules by using competing Lewis basic solvents.

8.
Adv Sci (Weinh) ; 11(2): e2305280, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37946699

RESUMO

Metal-organic frameworks (MOFs) have played a crucial role in recent advancements in developing lithium-based battery electrolytes, electrodes, and separators. Although many MOF-based battery components rely on their well-defined porosity and controllable functionality, they also boast a myriad of other significant properties relevant to battery applications. In this mini-review, the distinct advantages of MOFs in battery applications are discussed, including using MOFs to 1) scavenge impurities to increase cycling stability, 2) widen the operation temperature range of conventional electrolytes, 3) widen the operation voltage range of common electrolytes, and 4) employ as artificial solid-electrolyte interphases to prevent lithium dendrite growth. Furthermore, subsisting challenges of developing these emerging MOF-based battery technologies are discussed and guidance for shaping the future of this field is given.

9.
ACS Macro Lett ; 7(7): 801-806, 2018 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-35650771

RESUMO

Global intramolecular hydrogen bonds were installed and manipulated in a rigid artificial synthetic polymer in order to actively control its conformation for synthesis and processing. The polymer solubility was switched on and off by chemically inhibiting and regenerating these preorganized intramolecular hydrogen bonds. Such active manipulation made it possible to synthesize this highly rigid polymer with elevated molecular weights. A well-solubilized, noncoplanar polymer precursor with thermally cleavable Boc groups was synthesized (Mn = 32.4 kg/mol). After processing this precursor into thin films, in situ thermal treatment regenerated the latent intramolecular hydrogen bonds and led to a rigid ladder-type conformation. Such manipulation of the intramolecular hydrogen bonds allowed for multilayer deposition of this polymer, laying the foundation for potential additive manufacturing using this strategy.

10.
Org Lett ; 18(24): 6332-6335, 2016 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-27978664

RESUMO

Active conformational control is realized in a conjugated system using intramolecular hydrogen bonds to achieve tailored molecular, supramolecular, and solid-state properties. The hydrogen bonding functionalities are fused to the backbone and precisely preorganized to enforce a fully coplanar conformation of the π-system, leading to short π-π stacking distances, controllable molecular self-assembly, and solid-state growth of one-dimensional nano-/microfibers. This investigation demonstrates the efficiency and significance of an intramolecular noncovalent approach in promoting conformational control and self-assembly of organic molecules.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa