RESUMO
Although precise regulation of the crystalline structures of metal oxides is an effective method to improve their antibacterial activities, the corresponding mechanisms involved in this process are still unclear. In this study, three kinds of cuprous oxide (Cu2O) samples with different structures of cubes, octahedra, and rhombic dodecahedra (c-Cu2O, o-Cu2O, and r-Cu2O) have been successfully synthesized and their antibacterial activities are compared. The antibacterial activities follow the order of r-Cu2O > o-Cu2O > c-Cu2O, revealing the significant dependence of the antibacterial activities on the crystalline structures of Cu2O. Quenching experiments, as well as the NBT and DPD experiments indicate that ≡CuIIâOO⢠superoxo and ≡CuIIâOOH peroxo, instead of â¢OH, O2â¢-, and H2O2, are the primary oxidizing species in the oxidative damage to E. coli. Raman analysis further confirms the presence of both ≡CuIIâOO⢠superoxo and ≡CuIIâOOH peroxo on the surface of r-Cu2O. On the other hand, the NCP experiment reveals that Cu+, instead of Cu2+, also contributes to the antibacterial process. This study provides new insight into the antibacterial mechanisms of Cu2O.
RESUMO
Four previously undescribed angucyclinones umezawaones A-D (1-4) were isolated from the liquid cultures of Umezawaea beigongshangensis. Their structures were determined by spectroscopic analyses, single crystal X-ray diffraction, quantum chemical 13C NMR and electronic circular dichroism calculations. All compounds displayed strong inhibitory activities against indoleamine 2,3-dioxygenase and tryptophan-2,3-dioxygenase in enzymatic assay, especially compound 2.