Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 23(24): 11925-11931, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38088819

RESUMO

As a topological Dirac semimetal with controllable spin-orbit coupling and conductivity, PtSe2, a transition-metal dichalcogenide, is a promising material for several applications, from optoelectrics to sensors. However, its potential for spintronics applications has yet to be explored. In this work, we demonstrate that the PtSe2/Ni80Fe20 heterostructure can generate large damping-like current-induced spin-orbit torques (SOT), despite the absence of spin-splitting in bulk PtSe2. The efficiency of charge-to-spin conversion is found to be -0.1 ± 0.02 nm-1 in PtSe2/Ni80Fe20, which is 3 times that of the control sample, Ni80Fe20/Pt. Our band structure calculations show that the SOT due to PtSe2 arises from an unexpectedly large spin splitting in the interfacial region of PtSe2 introduced by the proximity magnetic field of the Ni80Fe20 layer. Our results open up the possibilities of using large-area PtSe2 for energy-efficient nanoscale devices by utilizing proximity-induced SOT.

2.
Sci Rep ; 14(1): 3487, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347066

RESUMO

Fe[Formula: see text]Sn[Formula: see text] is a topological kagome ferromagnet that possesses numerous Weyl points close to the Fermi energy, which can manifest various unique transport phenomena such as chiral anomaly, anomalous Hall effect, and giant magnetoresistance. However, the magnetodynamic properties of Fe[Formula: see text]Sn[Formula: see text] have not yet been explored. Here, we report, for the first time, the measurements of the intrinsic Gilbert damping constant ([Formula: see text]), and the effective spin mixing conductance (g[Formula: see text]) of Pt/Fe[Formula: see text]Sn[Formula: see text] bilayers for Fe[Formula: see text]Sn[Formula: see text] thicknesses down to 2 nm, for which [Formula: see text] is [Formula: see text], and g[Formula: see text] is [Formula: see text]. The films have a high saturation magnetization, [Formula: see text], and large anomalous Hall coefficient, [Formula: see text]. The large values of g[Formula: see text], together with the topological properties of Fe[Formula: see text]Sn[Formula: see text], make Fe[Formula: see text]Sn[Formula: see text]/Pt bilayers useful heterostructures for the study of topological spintronic devices.

3.
ACS Appl Mater Interfaces ; 15(22): 27285-27298, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37216628

RESUMO

Here, we report on the comprehensive growth, characterization, and optoelectronic application of large-area, two-dimensional germanium selenide (GeSe) layers prepared using the pulsed laser deposition (PLD) technique. Back-gated phototransistors based on few-layered 2D GeSe have been fabricated on a SiO2/Si substrate for ultrafast, low noise, and broadband light detection, showing spectral functionalities over a broad wavelength range of 0.4-1.5 µm. The broadband detection capabilities of the device have been attributed to the self-assembled GeOx/GeSe heterostructure and sub-bandgap absorption in GeSe. Besides a high photoresponsivity of 25 AW-1, the GeSe phototransistor displayed a high external quantum efficiency of the order of 6.14 × 103%, a maximum specific detectivity of 4.16 × 1010 Jones, and an ultralow noise equivalent power of 0.09 pW/Hz1/2. The detector has an ultrafast response/recovery time of 3.2/14.9 µs and can show photoresponse up to a high cut-off frequency of 150 kHz. These promising device parameters exhibited by PLD-grown GeSe layers-based detectors make it a favorable choice against present-day mainstream van der Waals semiconductors with limited scalability and optoelectronic compatibility in the visible-to-infrared spectral range.

4.
Nanoscale ; 14(23): 8484-8492, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35662312

RESUMO

Fe3Sn2, a kagome ferromagnet, is a potential quantum material with intriguing topological features. Despite substantial experimental work on the bulk single crystals, the thin film growth of Fe3Sn2 remains relatively unexplored. Here, we investigate the effect of two different seed layers (Ta and Pt) on the growth of Fe3Sn2 thin films. We demonstrate the growth of polycrystalline Fe3Sn2 thin films on Si/SiO2 substrates by room temperature sputter deposition, followed by in situ annealing at 500 °C. Our structural and magnetic measurements indicate that a pure ferromagnetic phase is formed for the Pt/Fe3Sn2 thin films with higher saturation magnetization of Ms = 464 emu cc-1, while a mixed-phase (consisting of ferromagnetic, Fe3Sn2 and antiferromagnetic, FeSn) is formed for the Ta/Fe3Sn2 thin films with a lower Ms of 240 emu cc-1. The Pt/Fe3Sn2 thin films also exhibit an anomalous Hall coefficient, Rs ≈ 2.6 × 10-10 Ω cm-1 G-1 at room temperature, which is two order of magnitude higher compared to 3d-transition metal ferromagnets. A non-zero temperature-independent anomalous Hall conductivity σintxy = (23 ± 11) Ω-1 cm-1 indicates an intrinsic mechanism of anomalous Hall effect originating from Berry curvature. These results are important for realizing novel topological spintronic devices on a CMOS-compatible substrate.

5.
ACS Appl Mater Interfaces ; 14(36): 41598-41604, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36052925

RESUMO

Spin-to-charge conversion is an essential requirement for the implementation of spintronic devices. Recently, monolayers (MLs) of semiconducting transition-metal dichalcogenides (TMDs) have attracted considerable interest for spin-to-charge conversion due to their high spin-orbit coupling and lack of inversion symmetry in their crystal structure. However, reports of direct measurement of spin-to-charge conversion at TMD-based interfaces are very much limited. Here, we report on the room-temperature observation of a large spin-to-charge conversion arising from the interface of Ni80Fe20 (Py) and four distinct large-area (∼5 × 2 mm2) ML TMDs, namely, MoS2, MoSe2, WS2, and WSe2. We show that both spin mixing conductance and the Rashba efficiency parameter (λIREE) scale with the spin-orbit coupling strength of the ML TMD layers. The λIREE parameter is found to range between -0.54 and -0.76 nm for the four ML TMDs, demonstrating a large spin-to-charge conversion. Our findings reveal that the TMD/ferromagnet interface can be used for efficient generation and detection of spin current, opening new opportunities for novel spintronic devices.

6.
ACS Appl Mater Interfaces ; 14(32): 37182-37191, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35921689

RESUMO

Spin pumping has been considered a powerful tool to manipulate the spin current in a ferromagnetic/nonmagnetic (FM/NM) system, where the NM part exhibits large spin-orbit coupling (SOC). In this work, the spin pumping in ß-W/Interlayer (IL)/Co2FeAl (CFA) heterostructures grown on Si(100) is systematically investigated with different ILs in which SOC strength ranges from weak to strong. We first measure the spin pumping through the enhancement of effective damping in CFA by varying the thickness of ß-W. The damping enhancement in the bilayer of ß-W/CFA (without IL) is found to be ∼50% larger than the Gilbert damping in a single CFA layer with a spin diffusion length and spin mixing conductance of 2.12 ± 0.27 nm and 13.17 ± 0.34 nm-2, respectively. Further, the ILs of different SOC strengths such as Al, Mg, Mo, and Ta were inserted at the ß-W/CFA interface to probe their impact on damping in ß-W/ILs/CFA. The effective damping reduced to 8% and 20% for Al and Mg, respectively, whereas it increased to 66% and 75% with ILs of Mo and Ta, respectively, compared to the ß-W/CFA heterostructure. Thus, in the presence of ILs with weak SOC, the spin pumping at the ß-W/CFA interface is suppressed, while for the high SOC ILs effective damping increased significantly from its original value of ß-W/CFA bilayer using a thin IL. This is further confirmed by performing inverse spin Hall effect measurements. In summary, the transfer of spin angular momentum can be significantly enhanced by choosing a proper ultrathin interface layer. Our study provides a tool to increase the spin current production by inserting an appropriate thin interlayer which is useful in modifying the heterostructure for efficient performance in spintronics devices.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa