RESUMO
The research on actinobacteria isolated from traditional medicinal plants is limited. Here, four new Streptomyces isolates (Ha1, Pp1, UzK and UzM) were obtained from the rhizospheres of Helianthus annuus, Pongamia pinnata and Ziziphus mauritiana, frequently utilized in Indian traditional medicine. The Streptomyces isolates aqueous extracts were studied alone against the growth of the Cryptococcus neoformans H99 reference strain, the fluconazole-tolerant T1-5796 and 89-610 strains, three histone deacetylase (HDAC) genes mutant strains, C. gattii NIH198, Candida albicans, C. glabrata, C. parapsilosis and C. tropicalis to determine minimum inhibitory concentration (MIC). Next, the extracts were employed in combination with aluminium-phthalocyanine chloride nanoemulsion-mediated photodynamic therapy to evaluate a possible interaction. We demonstrated that the C. neoformans T1-5796 fluconazole-tolerant strain was more severely inhibited by the Pp1 isolate extract (MIC: 6 mg mL-1) than H99, which was not inhibited. Growth inhibition of the HDAC null mutants was more prominent for the extract of the UzM isolate, showing inhibition at 2 mg mL-1. The UzM extract was also the most effective in hindering the Candida species proliferation, with MIC values ranging from 10 to 40 mg mL-1. The four Streptomyces extracts, especially UzK and UzM, significantly enhanced the antifungal effect of the photodynamic therapy. Our results indicate these Streptomyces isolates as sources of novel metabolites which could potentiate the effect of photodynamic therapy in controlling yeasts superficial infections.
Assuntos
Antifúngicos , Candida , Testes de Sensibilidade Microbiana , Fotoquimioterapia , Streptomyces , Fotoquimioterapia/métodos , Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Cryptococcus/efeitos dos fármacos , Humanos , Fármacos Fotossensibilizantes/farmacologiaRESUMO
The aim of this study is to investigate the antineoplastic potential of photodynamic therapy (PDT) mediated by an aluminum-phthalocyanine chloride nanoemulsion (AlPc-NE), against an oral squamous cell carcinoma (OSCC) cell line in vitro. Both OSCC (SCC9) and A431 cell lines were studied in vitro. Four study groups were used: Group 1 (phosphate-buffered saline [PBS]), Group 2 (PBS + 28.3 J/cm2 irradiation), Group 3 (AlPc-NE alone), and Group 4 (AlPc-NE + 28.3 J/cm2 irradiation). To test the effect of PDT with AlPc-NE, cell viability, migration, and cell death assays were performed. Moreover, the expressions of Ki-67 and TP53 were evaluated using immunoassays. The results showed that PDT mediated by all AlPc-NE concentrations evaluated (i.e., 0.7, 0.35, and 0.17 nM AlPc) significantly reduced the viability of SCC9 cells. Migration and cell death assays also revealed that PDT with AlPc-NE significantly reduced the rate of migration and increased cell death compared to the control groups. In addition, it was found that PDT with AlPc-NE reduced Ki-67 and mutated TP53 immunoexpression. PDT with AlPc-NE is effective in reducing the viability and migration of SCC9. Moreover, PDT with AlPc-NE nanoemulsions reduces the cell proliferation and expression of mutant TP53.
Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , Nanopartículas , Compostos Organometálicos , Fotoquimioterapia , Alumínio , Carcinoma de Células Escamosas/tratamento farmacológico , Humanos , Isoindóis , Antígeno Ki-67 , Neoplasias Bucais/tratamento farmacológico , Compostos Organometálicos/farmacologia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêuticoRESUMO
OBJECTIVES: This clinical study was developed to primarily evaluate the Complete Cytopathological Response Rate of Cervical Intraepithelial Neoplasms to PDT using chitosan nanocapsules containing Chlorocyan-aluminum phthalocyanine as a photoactive agent. Analyses of the Free Recurrence Interval, toxicity profile (immediate and late), and complications (immediate and late), were secondarily analyzed. METHODS: This study was previously approved by the National Council of Ethics in Research of Brazil (CONEP), on May 28, 2014, under case number 19182113.4.0000.5009. On the surface of the cervix of each selected patient was applied one mL of the formulated gel, and after 30 min, the light was applied. Reports or the identification of adverse effects and/or complications were observed in follow-up visits, in addition to the collection of cervical oncotic cytology. RESULTS: Out of the total group, 11 (91.7%) primarily treated patients evolved with negative cervical oncotic cytology as soon as in the first evaluation following treatment, and one did not achieve any therapeutic benefit, even after reapplication. Two patients with initially positive response presented cytological recurrence determined by histopathology. A new round of PDT was developed, and both evolved with cytological remission three weeks later, remaining negative until the last follow-up. No important side effects were observed in all the patients. CONCLUSIONS: Our trial demonstrates that treatment of CIN 1 and 2 lesions using our PDT formulation is feasible and safe. Large randomized clinical trials are required to establish efficacy.
Assuntos
Infecções por Papillomavirus , Fotoquimioterapia , Displasia do Colo do Útero , Neoplasias do Colo do Útero , Feminino , Humanos , Recidiva Local de Neoplasia , Neoplasias do Colo do Útero/tratamento farmacológicoRESUMO
A series of new indole-3-acetic acid (IAA)-tacrine hybrids as dual acetylcholinesterase (AChE)/butyrylcholinesterase (BChE) inhibitors were designed and prepared based on the molecular docking mode of AChE with an IAA derivative (1a), a moderate AChE inhibitor identified by screening our compound library for anti-Alzheimer's disease (AD) drug leads. The enzyme assay results revealed that some hybrids, e.g. 5d and 5e, displayed potent dual in vitro inhibitory activities against AChE/BChE with IC50 values in low nanomolar range. Molecular modeling studies in tandem with kinetic analysis suggest that these hybrids target both catalytic active site and peripheral anionic site of cholinesterase (ChE). Molecular dynamic simulations and Molecular Mechanics/Poisson-Boltzmann Surface Area (MM-PBSA) calculations indicate that 5e has more potent binding affinity than hit 1a, which may explain the stronger inhibitory effect of 5e on AChE. Furthermore, their predicted pharmacokinetic properties and in vitro influences on mouse brain neural network electrical activity were discussed. Taken together, compound 5e can be highlighted as a lead compound worthy of further optimization for designing new anti-AD drugs.
Assuntos
Inibidores da Colinesterase/farmacologia , Ácidos Indolacéticos/farmacologia , Tacrina/análogos & derivados , Tacrina/farmacologia , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Butirilcolinesterase/química , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Inibidores da Colinesterase/metabolismo , Células HEK293 , Células Hep G2 , Humanos , Ácidos Indolacéticos/síntese química , Ácidos Indolacéticos/química , Ácidos Indolacéticos/metabolismo , Cinética , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Ligação Proteica , Relação Estrutura-Atividade , Tacrina/síntese química , Tacrina/químicaRESUMO
Due to the low therapeutic index of different chemotherapeutic drugs used for cancer treatment, the development of new anticancer drugs remains an intense field of research. A recently developed mixture of selenitetriacylglycerides, selol, was shown to be active against different cancer cells in vitro. As this compound is highly hydrophobic, it was encapsulated, in a previous study, into poly(methyl vinyl ether-co-maleic anhydride)-shelled nanocapsules in order to improve its dispersibility in aqueous media. Following this line of research, the present report aimed at enhancing the In Vitro activity of the selol nanocapsules against cancerous cells by decorating their surface with folic acid. It is known that several cancer cells overexpress folate receptors. Stable folic acid-decorated selol nanocapsules (SNP-FA) were obtained, which showed to be spherical, with a hydro-dynamic diameter of 364 nm, and zeta potential of -24 mV. In comparison to non-decorated selol nanocapsules, SNP-FA presented higher activity against 4T1, MCF-7 and HeLa cells. Moreover, the decoration of the nanocapsules did not alter their toxicity towards fibroblasts, NIH-3T3 cells. These results show that the decoration with folic acid increased the toxicity of selol nanocapsules to cancer cells. These nanocapsules, besides enabling to disperse selol in an aqueous medium, increased the toxicity of this drug In Vitro, and may be useful to treat cancer in vivo, potentially increasing the specificity of selol towards cancer cells.
Assuntos
Nanocápsulas , Neoplasias , Compostos de Selênio , Animais , Linhagem Celular Tumoral , Ácido Fólico , Células HeLa , Humanos , Maleatos , Camundongos , Neoplasias/tratamento farmacológico , PolietilenosRESUMO
A new Keap1-Nrf2 protein-protein interaction (PPI) inhibitor ZJ01 was identified from our compound library by fluorescence polarization assay, surface plasmon resonance, molecular docking and molecular dynamics simulation. ZJ01 could in vitro trigger Nrf2 nuclear translocation, subsequently resulting in increased mRNA levels of Nrf2 target genes HO-1 and NQO1. Meanwhile, ZJ01 suppressed LPS-induced production of ROS and the mRNA levels of pro-inflammatory cytokines TNF-α, IL-1ß and IL-6 in H9c2 cardiac cells. Moreover, in an in vivo mouse model of septic cardiomyopathy induced by intraperitoneal injection of lipopolysaccharide, ZJ01 demonstrated a cytoprotective effect, upregulated Nrf2 protein nuclear accumulation, and remarkably suppressed the abovementioned cytokine levels in cardiomyocytes. The results presented herein provided a novel chemotype for the development of direct Keap1-Nrf2 PPI inhibitors and suggested that compound ZJ01 is a promising drug lead for septic cardiomyopathy treatment. ZJ01 was identified as a new Keap1-Nrf2 PPI inhibitor and drug lead for septic cardiomyopathy treatment by in vitro and in vivo experiments.
Assuntos
Cardiomiopatias/tratamento farmacológico , Citoproteção/efeitos dos fármacos , Proteína 1 Associada a ECH Semelhante a Kelch/antagonistas & inibidores , Lipopolissacarídeos/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/metabolismo , Células Cultivadas , Citocinas/antagonistas & inibidores , Citocinas/biossíntese , Relação Dose-Resposta a Droga , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Estrutura Molecular , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Ligação Proteica/efeitos dos fármacos , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/biossíntese , Ratos , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-AtividadeRESUMO
A series of new 1,2,3-triazole derivatives were synthesized and evaluated for anticholinesterase and neuroprotective activities. Some synthetic derivatives, especially compound 32, exhibited improved acetylcholinesterase (AChE) inhibitory activity by comparison with the hit 1, high selectivity toward AChE over butyrylcholinesterase (BuChE), and suitable in vitro neuroprotective effect against amyloid-ß25-35 (Aß25-35)-induced neurotoxicity in SH-SY5Y cells. Furthermore, these molecules have desired physicochemical properties in the range of CNS drugs and showed no cytotoxicity against two normal cells, including human keratinocytes HaCaT and murine fibroblasts NIH-3T3. The preliminary bioassay results and docking study indicated that compound 32 might be a promising lead compound with dual action for the treatment of Alzheimer's disease.
Assuntos
Inibidores da Colinesterase/síntese química , Fármacos Neuroprotetores/síntese química , Triazóis/química , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Peptídeos beta-Amiloides/toxicidade , Animais , Sítios de Ligação , Barreira Hematoencefálica/metabolismo , Butirilcolinesterase/química , Butirilcolinesterase/metabolismo , Domínio Catalítico , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Humanos , Ligação de Hidrogênio , Camundongos , Simulação de Acoplamento Molecular , Células NIH 3T3 , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/toxicidade , Triazóis/síntese químicaRESUMO
Selol is a semi-synthetic compound containing selenite that is effective against cancerous cells and safer for clinical applications in comparison with other inorganic forms of selenite. Recently, we have developed a formulation of poly(methyl vinyl ether-co-maleic anhydride)-shelled selol nanocapsules (SPN), which reduced the proliferative activity of lung adenocarcinoma cells and presented little deleterious effects on normal cells in in vitro studies. In this study, we report on the antitumor activity and systemic effects induced by this formulation in chemically induced lung adenocarcinoma-bearing mice. The in vivo antitumor activity of the SPN was verified by macroscopic quantification, immunohistochemistry and morphological analyses. Toxicity analyses were performed by evaluations of the kidney, liver, and spleen; analyses of hemogram and plasma levels of alanine aminotransferase, aspartate transaminase, urea, and creatinine; and DNA fragmentation and cell cycle activity of the bone marrow cells. Furthermore, we investigated the potential of the SPN formulation to cause hemolysis, activate the complement system, provoke an inflammatory response and change the conformation of the plasma proteins. Our results showed that the SPN reduced the area of the surface tumor nodules but not the total number of tumor nodules. The biochemical and hematological findings were suggestive of the low systemic toxicity of the SPN formulation. The surface properties of the selol nanocapsules point to characteristics that are consistent with the treatment of the tumors in vivo: low hemolytic activity, weak inflammatory reaction with no activation of the complement system, and mild or absent conformational changes of the plasma proteins. In conclusion, this report suggests that the SPN formulation investigated herein exhibits anti-tumoral effects against lung adenocarcinoma in vivo and is associated with low systemic toxicity and high biocompatibility.
Assuntos
Adenocarcinoma/tratamento farmacológico , Antineoplásicos/administração & dosagem , Neoplasias Pulmonares/tratamento farmacológico , Maleatos/administração & dosagem , Nanocápsulas/administração & dosagem , Polietilenos/administração & dosagem , Compostos de Selênio/administração & dosagem , Adenocarcinoma/ultraestrutura , Adenocarcinoma de Pulmão , Animais , Antineoplásicos/química , Antineoplásicos/toxicidade , Peso Corporal/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proteínas do Sistema Complemento/metabolismo , Fragmentação do DNA/efeitos dos fármacos , Feminino , Inflamação/induzido quimicamente , Neoplasias Pulmonares/ultraestrutura , Maleatos/química , Maleatos/toxicidade , Camundongos , Nanocápsulas/química , Nanocápsulas/toxicidade , Tamanho do Órgão/efeitos dos fármacos , Polietilenos/química , Polietilenos/toxicidade , Compostos de Selênio/química , Compostos de Selênio/toxicidadeRESUMO
BACKGROUND: Photodynamic therapy (PDT) combines light, molecular oxygen and a photosensitizer to induce oxidative stress in target cells. Certain hydrophobic photosensitizers, such as aluminium-phthalocyanine chloride (AlPc), have significant potential for antitumor PDT applications. However, hydrophobic molecules often require drug-delivery systems, such as nanostructures, to improve their pharmacokinetic properties and to prevent aggregation, which has a quenching effect on the photoemission properties in aqueous media. As a result, this work aims to develop and test the efficacy of an AlPc in the form of a nanoemulsion to enable its use in anticancer PDT. RESULTS: The nanoemulsion was developed using castor oil and Cremophor ELP®, and a monodisperse population of nanodroplets with a hydrodynamic diameter of approximately 25 nm was obtained. While free AlPc failed to show significant activity against human breast adenocarcinoma MCF-7 cells in an in vitro PDT assay, the AlPc in the nanoemulsion showed intense photodynamic activity. Photoactivated AlPc exhibited a 50 % cytotoxicity concentration (CC50) of 6.0 nM when applied to MCF-7 cell monolayers and exerted a powerful cytotoxic effect on MCF-7 cell spheroids. CONCLUSION: Through the use of spontaneous emulsification, a stable AlPc nanoemulsion was developed that exhibits strong in vitro photodynamic activity on cancer cells.
Assuntos
Alumínio/química , Antineoplásicos/farmacologia , Emulsões/química , Indóis/química , Fotoquimioterapia/métodos , Alumínio/farmacologia , Antineoplásicos/química , Óleo de Rícino/química , Coloides/química , Relação Dose-Resposta a Droga , Sistemas de Liberação de Medicamentos , Emulsões/farmacologia , Humanos , Indóis/farmacologia , Isoindóis , Células MCF-7/efeitos dos fármacos , Células MCF-7/patologia , Nanoestruturas/química , Análise Espectral Raman , Tensoativos/químicaRESUMO
BACKGROUND: Selol is an oily mixture of selenitetriacylglycerides that was obtained as a semi-synthetic compound containing selenite. Selol is effective against cancerous cells and less toxic to normal cells compared with inorganic forms of selenite. However, Selol's hydrophobicity hinders its administration in vivo. Therefore, the present study aimed to produce a formulation of Selol nanocapsules (SPN) and to test its effectiveness against pulmonary adenocarcinoma cells (A549). RESULTS: Nanocapsules were produced through an interfacial nanoprecipitation method. The polymer shell was composed of poly(methyl vinyl ether-co-maleic anhydride) (PVM/MA) copolymer. The obtained nanocapsules were monodisperse and stable. Both free Selol (S) and SPN reduced the viability of A549 cells, whereas S induced a greater reduction in non-tumor cell viability than SPN. The suppressor effect of SPN was primarily associated to the G2/M arrest of the cell cycle, as was corroborated by the down-regulations of the CCNB1 and CDC25C genes. Apoptosis and necrosis were induced by Selol in a discrete percentage of A549 cells. SPN also increased the production of reactive oxygen species, leading to oxidative cellular damage and to the overexpression of the GPX1, CYP1A1, BAX and BCL2 genes. CONCLUSIONS: This study presents a stable formulation of PVM/MA-shelled Selol nanocapsules and provides the first demonstration that Selol promotes G2/M arrest in cancerous cells.
Assuntos
Adenocarcinoma/tratamento farmacológico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Maleatos/química , Nanocápsulas/química , Polietilenos/química , Compostos de Selênio/farmacologia , Adenocarcinoma/patologia , Adenocarcinoma/ultraestrutura , Adenocarcinoma de Pulmão , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral/ultraestrutura , Ciclina B1/genética , Relação Dose-Resposta a Droga , Glutationa Peroxidase/genética , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/ultraestrutura , Nanoconchas/química , Espécies Reativas de Oxigênio/metabolismo , Compostos de Selênio/administração & dosagem , Compostos de Selênio/química , Termodinâmica , Fosfatases cdc25/genética , Glutationa Peroxidase GPX1RESUMO
INTRODUCTION: Cancer is an individual disease and its formation and development are specific to each host. Conventional treatments are ineffective in complex cases, such as metastasis, and have severe adverse side effects. New strategies are needed to address the problem, and the use of immunogenic cell death (ICD) as a trigger or booster of the immune system through the exposure of damage-associated molecular patterns, along with tumor antigens, by cancerous cells is presented as an immunization approach in this work. METHODS: For this purpose, 4T1 cells were exposed to doxorubicin (DOX) for 24 hours and then, these cells undergoing ICD were subcutaneously administered to mice. The ICD induction by DOX on 4T1 was assessed by flow cytometry and image analysis. This immunization process was performed three times and after the last administration, the immunized mice were challenged with a subcutaneous xenograft of live cancer cells. RESULTS: The results demonstrate that the mice immunized with cells undergoing ICD after exposure to DOX presented no primary tumor or indications of distant metastatic lesion development. CONCLUSION: In summary, our findings indicate that the immunization process utilizing ICD is indeed efficacious in managing this aggressive form of pre-clinical breast cancer.
Assuntos
Neoplasias da Mama , Doxorrubicina , Camundongos Endogâmicos BALB C , Animais , Doxorrubicina/farmacologia , Doxorrubicina/administração & dosagem , Camundongos , Feminino , Neoplasias da Mama/patologia , Neoplasias da Mama/imunologia , Neoplasias da Mama/tratamento farmacológico , Metástase Neoplásica , Progressão da Doença , Morte Celular Imunogênica/efeitos dos fármacos , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/administração & dosagem , Humanos , Linhagem Celular Tumoral , Modelos Animais de DoençasRESUMO
Photodynamic therapy (PDT) uses a photosensitizer to generate reactive oxygen species (ROS) that kill target cells. In cancer treatments, PDT can potentially induce immunogenic cell death (ICD), which is characterized by a well-controlled exposure of damage-associated molecular patterns (DAMPs) that activate dendritic cells (DCs) and consequently modulate the immune response in the tumor microenvironment. However, PDT still has limitations, such as the activity of photosensitizers in aqueous media and poor bioavailability. Therefore, a new photosensitizer system, SLN-AlPc, has been developed to improve the therapeutic efficacy of PDT. In vitro experiments showed that the light-excited nanocarrier increased ROS production in murine melanoma B16-F10 cells and modulated the profile of DCs. PDT induced cell death accompanied by the exposure of DAMPs and the formation of autophagosomes. In addition, the DCs exposed to PDT-treated B16-F10 cells exhibited morphological changes, increased expression of MHCII, CD86, CD80, and production of IL-12 and IFN-γ, suggesting immune activation towards an antitumor profile. These results indicate that the SLNs-AlPc protocol has the potential to improve PDT efficacy by inducing ICD and activating DCs.
RESUMO
The industries are searching for greener alternatives for their productions due to the rising concern about the environment and creation of waste and by-products without industrial utility for that specific line of products. This investigation describes the development of two stable nanostructured lipid carriers (NLCs): one is the formulation of a standard NLC, and the other one is the same NLC formulation associated with a natural deep eutectic solvent (NaDES). The research presents the formulation paths of the NLCs through completeness, which encompass dynamic light scattering (DLS), zeta potential tests, and pH. Transmission electron microscopy (TEM) and confocal microscopy were performed to clarify the morphology. Cytotoxicity tests with zebrafish were realized, and the results are complementary to the in vitro outcomes reached with fibroblast L132 tests by the MTT technique and the zymography test. Infrared spectroscopy and X-ray diffractometry tests elucidated the link between the physicochemical characteristics of the formulation and its behavior and properties. Different cooling techniques were explored to prove the tailorable properties of the NLCs for any industrial applications. In conclusion, the compiled results show the successful formulation of new nanocarriers based on a sustainable, eco-friendly, and highly tailorable technology, which presents low cytotoxic potential.
RESUMO
The green synthesis of silver nanoparticles (AgNPs) can be developed using safe and environmentally friendly routes, can replace potentially toxic chemical methods, and can increase the scale of production. This study aimed to synthesize AgNPs from aqueous extracts of guarana (Paullinia cupana) leaves and flowers, collected in different seasons of the year, as a source of active biomolecules capable of reducing silver ions (Ag+) and promoting the stabilization of colloidal silver (Ag0). The plant aqueous extracts were characterized regarding their metabolic composition by liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS/MS), phenolic compound content, and antioxidant potential against free radicals. The synthesized AgNPs were characterized by UV/Vis spectrophotometry, dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), and scanning electron microscopy coupled to energy-dispersive X-ray spectrometry (EDX). The results demonstrated that the chemical characterization indicated the presence of secondary metabolites of many classes of compounds in the studied aqueous extracts studied, but alkaloids and flavonoids were predominant, which are widely recognized for their antioxidant capabilities. It was possible to notice subtle changes in the properties of the nanostructures depending on parameters such as seasonality and the part of the plant used, with the AgNPs showing surface plasmon resonance bands between 410 and 420 nm using the leaf extract and between 440 and 460 nm when prepared using the flower extract. Overall, the average hydrodynamic diameters of the AgNPs were similar among the samples (61.98 to 101.6 nm). Polydispersity index remained in the range of 0.2 to 0.4, indicating that colloidal stability did not change with storage time. Zeta potential was above -30 mV after one month of analysis, which is adequate for biological applications. TEM images showed AgNPs with diameters between 40.72 to 48.85 nm and particles of different morphologies. EDX indicated silver content by weight between 24.06 and 28.81%. The synthesized AgNPs exhibited antimicrobial efficacy against various pathogenic microorganisms of clinical and environmental interest, with MIC values between 2.12 and 21.25 µg/mL, which is close to those described for MBC values. Therefore, our results revealed the potential use of a native species of plant from Brazilian biodiversity combined with nanotechnology to produce antimicrobial agents.
RESUMO
Nanomedicine is a special medical field focused on the application of nanotechnology to provide innovations for healthcare in different areas, including the treatment of a wide variety of diseases, including cancer [...].
RESUMO
The use of nucleotides for biomedical applications is an old desire in the scientific community. As we will present here, there are references published over the past 40 years with this intended use. The main problem is that, as unstable molecules, nucleotides require some additional protection to extend their shelf life in the biological environment. Among the different nucleotide carriers, the nano-sized liposomes proved to be an effective strategic tool to overcome all these drawbacks related to the nucleotide high instability. Moreover, due to their low immunogenicity and easy preparation, the liposomes were selected as the main strategy for delivery of the mRNA developed for COVID-19 immunization. For sure this is the most important and relevant example of nucleotide application for human biomedical conditions. In addition, the use of mRNA vaccines for COVID-19 has increased interest in the application of this type of technology to other health conditions. For this review article, we will present some of these examples, especially focused on the use of liposomes to protect and deliver nucleotides for cancer therapy, immunostimulatory activities, enzymatic diagnostic applications, some examples for veterinarian use, and the treatment of neglected tropical disease.
RESUMO
Melanoma, a severe form of skin cancer intricately linked to genetic and environmental factors, is predicted to reach 100,000 new cases worldwide by 2040, underscoring the need for effective and safe treatment options. In this study, we assessed the efficacy of a photosensitizer called Chlorophyll A (Chl-A) incorporated into hydrogels (HGs) made of chitosan (CS) and poloxamer 407 (P407) for Photodynamic Therapy (PDT) against the murine melanoma cell line B16-F10. The HG was evaluated through various tests, including rheological studies, SEM, and ATR-FTIR, along with cell viability assays. The CS- and P407-based HGs effectively released Chl-A and possessed the necessary properties for topical application. The photodynamic activity of the HG containing Chl-A was evaluated in vitro, demonstrating high therapeutic potential, with an IC50 of 25.99 µM-an appealing result when compared to studies in the literature reporting an IC50 of 173.8 µM for cisplatin, used as a positive control drug. The developed formulation of CS and P407-based HG, serving as a thermosensitive system for topical applications, successfully controlled the release of Chl-A. In vitro cell studies associated with PDT exhibited potential against the melanoma cell line.
RESUMO
Immunogenic cell death (ICD) is a modality of regulated cell death that is sufficient to promote an adaptive immune response against antigens of the dying cell in an immunocompetent host. An important characteristic of ICD is the release and exposure of damage-associated molecular patterns, which are potent endogenous immune adjuvants. As the induction of ICD can be achieved with conventional cytotoxic agents, it represents a potential approach for the immunotherapy of cancer. Here, different aspects of ICD in cancer biology and treatment are reviewed.
RESUMO
Infectious diseases are among the major health issues of the 21st century. The substantial use of antibiotics over the years has contributed to the dissemination of multidrug resistant bacteria. According to a recent report by the World Health Organization, antibacterial (ATB) drug resistance has been one of the biggest challenges, as well as the development of effective long-term ATBs. Since pathogens quickly adapt and evolve through several strategies, regular ATBs usually may result in temporary or noneffective treatments. Therefore, the demand for new therapies methods, such as nano-drug delivery systems (NDDS), has aroused huge interest due to its potentialities to improve the drug bioavailability and targeting efficiency, including liposomes, nanoemulsions, solid lipid nanoparticles, polymeric nanoparticles, metal nanoparticles, and others. Given the relevance of this subject, this review aims to summarize the progress of recent research in antibacterial therapeutic drugs supported by nanobiotechnological tools.
RESUMO
Photodynamic therapy (PDT) has been clinically employed to treat mainly superficial cancer, such as basal cell carcinoma. This approach can eliminate tumors by direct cytotoxicity, tumor ischemia, or by triggering an immune response against tumor cells. Among the immune-related mechanisms of PDT, the induction of immunogenic cell death (ICD) in target cells is to be cited. ICD is an apoptosis modality distinguished by the emission of damage-associated molecular patterns (DAMP). Therefore, this study aimed to analyze the immunogenicity of CT26 and 4T1 treated with PDT mediated by aluminum-phthalocyanine in nanoemulsion (PDT-AlPc-NE). Different PDT-AlPc-NE protocols with varying doses of energy and AlPc concentrations were tested. The death mechanism and the emission of DAMPs-CRT, HSP70, HSP90, HMGB1, and IL-1ß-were analyzed in cells treated in vitro with PDT. Then, the immunogenicity of these cells was assessed in an in vivo vaccination-challenge model with BALB/c mice. CT26 and 4T1 cells treated in vitro with PDT mediated by AlPc IC50 and a light dose of 25 J/cm2 exhibited the hallmarks of ICD, i.e., these cells died by apoptosis and exposed DAMPs. Mice injected with these IC50 PDT-treated cells showed, in comparison to the control, increased resistance to the development of tumors in a subsequent challenge with viable cells. Mice injected with 4T1 and CT26 cells treated with higher or lower concentrations of photosensitizer and light doses exhibited a significantly lower resistance to tumor development than those injected with IC50 PDT-treated cells. The results presented in this study suggest that both the photosensitizer concentration and light dose affect the immunogenicity of the PDT-treated cells. This event can affect the therapy outcomes in vivo.