Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Cereb Cortex ; 33(14): 9144-9153, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37259175

RESUMO

The default mode network is essential for higher-order cognitive processes and is composed of an extensive network of functional and structural connections. Early in fetal life, the default mode network shows strong connectivity with other functional networks; however, the association with structural development is not well understood. In this study, resting-state functional magnetic resonance imaging and anatomical images were acquired in 30 pregnant women with singleton pregnancies. Participants completed 1 or 2 MR imaging sessions, on average 3 weeks apart (43 data sets), between 28- and 39-weeks postconceptional ages. Subcortical volumes were automatically segmented. Activation time courses from resting-state functional magnetic resonance imaging were extracted from the default mode network, medial temporal lobe network, and thalamocortical network. Generalized estimating equations were used to examine the association between functional connectivity strength between default mode network-medial temporal lobe, default mode network-thalamocortical network, and subcortical volumes, respectively. Increased functional connectivity strength in the default mode network-medial temporal lobe network was associated with smaller right hippocampal, left thalamic, and right caudate nucleus volumes, but larger volumes of the left caudate. Increased functional connectivity strength in the default mode network-thalamocortical network was associated with smaller left thalamic volumes. The strong associations seen among the default mode network functional connectivity networks and regionally specific subcortical volume development indicate the emergence of short-range connectivity in the third trimester.


Assuntos
Rede de Modo Padrão , Lobo Temporal , Gravidez , Humanos , Feminino , Imageamento por Ressonância Magnética/métodos , Hipocampo , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico
2.
Perception ; 50(5): 387-398, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33951950

RESUMO

Adults describe abstract shapes moving in a goal-directed manner using animate terms. This study tested which variables affect school-aged children's descriptions of moving geometrical shapes. Children aged 5 to 9 years were shown displays of interacting geometrical shapes and were asked to describe them. Across participants, instructions, number of moving figures, whether a figure caught another, and complexity of the scene were manipulated. Nine-year-olds used significantly more animate phrases than 5-year-olds. Furthermore, we found an Age by Condition interaction. Five-year-olds made significantly more animate statements in the animate condition, while 7-year-olds and 9-year-olds were less affected by instructions. Scene complexity increased children's use of animate phrases. Number of agents present on the screen and whether a catch occurred did not impact children's animate attributions. Our results support the hypothesis that children, like adults, are attuned to animacy cues and describe chasing agents in animate terms.


Assuntos
Percepção de Movimento , Adulto , Criança , Pré-Escolar , Sinais (Psicologia) , Humanos , Motivação , Percepção Social
3.
Brain Struct Funct ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39103553

RESUMO

Very preterm birth (< 32 weeks' gestational age) is associated with later social and emotional impairments, which may result from enhanced vulnerability of the limbic system during this period of heightened vulnerability. Evidence suggests that early procedural pain may be a key moderator of early brain networks. In a prospective cohort study, neonates born very preterm (< 30 weeks' gestation) underwent MRI scanning at term-equivalent age (TEA) and clinical data were collected (mechanical ventilation, analgesics, sedatives). Procedural pain was operationalized as the number of skin breaking procedures. Amygdala volumes were automatically extracted. The Strengths and Difficulties questionnaire was used to assess social-emotional outcomes at 5 years of age (mean age 67.5 months). General linear models were employed to examine the association between neonatal amygdala volumes and social-emotional outcomes and the timing and amount of procedural pain exposure (early within the first weeks of life to TEA) as a moderator, adjusting for biological sex, gestational age, 5-year assessment age, days of mechanical ventilation and total cerebral volumes. A total of 42 preterm infants participated. Right amygdala volumes at TEA were associated with prosocial behaviour at age 5 (B = -0.010, p = 0.005). Procedural pain was found to moderate the relationship between right amygdala volumes in the neonatal period and conduct problems at 5 years, such that early skin breaking procedures experienced within the first few weeks of life strengthened the association between right amygdala volumes and conduct problems (B = 0.005, p = 0.047). Late skin breaking procedures, experienced near TEA, also strengthened the association between right amygdala volumes and conduct problems (B = 0.004, p = 0.048).


HIGHLIGHTS: ● Preterm birth is associated with social-emotional challenges.● Amygdala volumes at term equivalent age were assessed in relation to preschool social-emotional outcomes.● Larger right amygdala volumes at term-equivalent age were associated with impaired prosocial behaviour at age 5.● Procedural pain moderated the relationship between neonatal amygdala volumes and conduct problems at age 5, with early or late skin breaking procedures strengthening this association.● Dysregulated growth and maturation of the amygdala in preterm neonates were associated with differences in social functioning at 5 years old, with early life procedural pain playing a moderating role.

4.
Front Neurosci ; 16: 1027084, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36440277

RESUMO

Background: Volumetric measurements of fetal brain maturation in the third trimester of pregnancy are key predictors of developmental outcomes. Improved understanding of fetal brain development trajectories may aid in identifying and clinically managing at-risk fetuses. Currently, fetal brain structures in magnetic resonance images (MRI) are often manually segmented, which requires both time and expertise. To facilitate the targeting and measurement of brain structures in the fetus, we compared the results of five segmentation methods applied to fetal brain MRI data to gold-standard manual tracings. Methods: Adult women with singleton pregnancies (n = 21), of whom five were scanned twice, approximately 3 weeks apart, were recruited [26 total datasets, median gestational age (GA) = 34.8, IQR = 30.9-36.6]. T2-weighted single-shot fast spin echo images of the fetal brain were acquired on 1.5T and 3T MRI scanners. Images were first combined into a single 3D anatomical volume. Next, a trained tracer manually segmented the thalamus, cerebellum, and total cerebral volumes. The manual segmentations were compared with five automatic methods of segmentation available within Advanced Normalization Tools (ANTs) and FMRIB's Linear Image Registration Tool (FLIRT) toolboxes. The manual and automatic labels were compared using Dice similarity coefficients (DSCs). The DSC values were compared using Friedman's test for repeated measures. Results: Comparing cerebellum and thalamus masks against the manually segmented masks, the median DSC values for ANTs and FLIRT were 0.72 [interquartile range (IQR) = 0.6-0.8] and 0.54 (IQR = 0.4-0.6), respectively. A Friedman's test indicated that the ANTs registration methods, primarily nonlinear methods, performed better than FLIRT (p < 0.001). Conclusion: Deformable registration methods provided the most accurate results relative to manual segmentation. Overall, this semi-automatic subcortical segmentation method provides reliable performance to segment subcortical volumes in fetal MR images. This method reduces the costs of manual segmentation, facilitating the measurement of typical and atypical fetal brain development.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa