Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Great Lakes Res ; 50: 1-13, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38783923

RESUMO

The North American Great Lakes have been experiencing dramatic change during the past half-century, highlighting the need for holistic, ecosystem-based approaches to management. To assess interest in ecosystem-based management (EBM), including the value of a comprehensive public database that could serve as a repository for the numerous physical, chemical, and biological monitoring Great Lakes datasets that exist, a two-day workshop was organized, which was attended by 40+ Great Lakes researchers, managers, and stakeholders. While we learned during the workshop that EBM is not an explicit mission of many of the participating research, monitoring, and management agencies, most have been conducting research or monitoring activities that can support EBM. These contributions have ranged from single-resource (-sector) management to considering the ecosystem holistically in a decision-making framework. Workshop participants also identified impediments to implementing EBM, including: 1) high anticipated costs; 2) a lack of EBM success stories to garner agency buy-in; and 3) difficulty in establishing common objectives among groups with different mandates (e.g., water quality vs. fisheries production). We discussed as a group solutions to overcome these impediments, including construction of a comprehensive, research-ready database, a prototype of which was presented at the workshop. We collectively felt that such a database would offer a cost-effective means to support EBM approaches by facilitating research that could help identify useful ecosystem indicators and management targets and allow for management strategy evaluations that account for risk and uncertainty when contemplating future decision-making.

2.
Glob Chang Biol ; 26(3): 1118-1137, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31833135

RESUMO

Control programs are implemented to mitigate the damage caused by invasive species worldwide. In the highly invaded Great Lakes, the climate is expected to become warmer with more extreme weather and variable precipitation, resulting in shorter iced-over periods and variable tributary flows as well as changes to pH and river hydrology and hydrogeomorphology. We review how climate change influences physiology, behavior, and demography of a damaging invasive species, sea lamprey (Petromyzon marinus), in the Great Lakes, and the consequences for sea lamprey control efforts. Sea lamprey control relies on surveys to monitor abundance of larval sea lamprey in Great Lakes tributaries. The abundance of parasitic, juvenile sea lampreys in the lakes is calculated by surveying wounding rates on lake trout (Salvelinus namaycush), and trap surveys are used to enumerate adult spawning runs. Chemical control using lampricides (i.e., lamprey pesticides) to target larval sea lamprey and barriers to prevent adult lamprey from reaching spawning grounds are the most important tools used for sea lamprey population control. We describe how climate change could affect larval survival in rivers, growth and maturation in lakes, phenology and the spawning migration as adults return to rivers, and the overall abundance and distribution of sea lamprey in the Great Lakes. Our review suggests that Great Lakes sea lamprey may benefit from climate change with longer growing seasons, more rapid growth, and greater access to spawning habitat, but uncertainties remain about the future availability and suitability of larval habitats. Consideration of the biology of invasive species and adaptation of the timing, intensity, and frequency of control efforts is critical to the management of biological invasions in a changing world, such as sea lamprey in the Great Lakes.


Assuntos
Praguicidas , Petromyzon , Animais , Mudança Climática , Lagos , Rios
3.
Bioscience ; 70(10): 871-886, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33093814

RESUMO

Barrier removal is a recognized solution for reversing river fragmentation, but restoring connectivity can have consequences for both desirable and undesirable species, resulting in a connectivity conundrum. Selectively passing desirable taxa while restricting the dispersal of undesirable taxa (selective connectivity) would solve many aspects of the connectivity conundrum. Selective connectivity is a technical challenge of sorting an assortment of things. Multiattribute sorting systems exist in other fields, although none have yet been devised for freely moving organisms within a river. We describe an approach to selective fish passage that integrates ecology and biology with engineering designs modeled after material recycling processes that mirror the stages of fish passage: approach, entry, passage, and fate. A key feature of this concept is the integration of multiple sorting processes each targeting a specific attribute. Leveraging concepts from other sectors to improve river ecosystem function may yield fast, reliable solutions to the connectivity conundrum.

4.
Immunogenetics ; 70(1): 53-66, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28547520

RESUMO

Many fishes express high levels of intraspecific variability, often linked to resource partitioning. Several studies show that a species' evolutionary trajectory of adaptive divergence can undergo reversals caused by changes in its environment. Such a reversal in neutral genetic and morphological variation among lake trout Salvelinus namaycush ecomorphs appears to be underway in Lake Superior. However, a water depth gradient in neutral genetic divergence was found to be associated with intraspecific diversity in the lake. To investigate patterns of adaptive immunogenetic variation among lake trout ecomorphs, we used Illumina high-throughput sequencing. The population's genetic structure of the major histocompatibility complex (MHC Class IIß exon 2) and 18 microsatellite loci were compared to disentangle neutral and selective processes at a small geographic scale. Both MHC and microsatellite variation were partitioned more by water depth stratum than by ecomorph. Several metrics showed strong clustering by water depth in MHC alleles, but not microsatellites. We report a 75% increase in the number of MHC alleles shared between the predominant shallow and deep water ecomorphs since a previous lake trout MHC study at the same locale (c. 1990s data). This result is consistent with the reverse speciation hypothesis, although adaptive MHC polymorphisms persist along an ecological gradient. Finally, results suggested that the lake trout have multiple copies of the MHC II locus consistent with a historic genomic duplication event. Our findings indicated that conservation approaches for this species could focus on managing various ecological habitats by depth, in addition to regulating the fisheries specific to ecomorphs.


Assuntos
Complexo Principal de Histocompatibilidade/genética , Truta/genética , Truta/imunologia , Alelos , Animais , Evolução Biológica , Variações do Número de Cópias de DNA/genética , Ecossistema , Éxons/genética , Deriva Genética , Variação Genética/genética , Great Lakes Region , Fenômenos Imunogenéticos/genética , Repetições de Microssatélites/genética , Filogenia , Seleção Genética/genética
5.
Mol Ecol ; 26(6): 1477-1497, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28099784

RESUMO

Understanding the emergence of species through the process of ecological speciation is a central question in evolutionary biology which also has implications for conservation and management. Lake trout (Salvelinus namaycush) is renowned for the occurrence of different ecotypes linked to resource and habitat use throughout North America. We aimed to unravel the fine genetic structure of the four lake trout ecotypes in Lake Superior. A total of 486 individuals from four sites were genotyped at 6822 filtered SNPs using RADseq technology. Our results revealed different extent of morphological and genetic differentiation within the different sites. Overall, genetic differentiation was weak but significant and was on average three times higher between sites (mean FST  = 0.016) than between ecotypes within sites (mean FST  = 0.005) indicating higher level of gene flow or a more recent shared ancestor between ecotypes within each site than between populations of the same ecotype. Evidence of divergent selection was also found between ecotypes and/or in association with morphological variation. Outlier loci found in genes related to lipid metabolism and visual acuity were of particular interest in this context of ecotypic divergence. However, we did not find clear indication of parallelism at the genomic level, despite the presence of phenotypic parallelism among some ecotypes from different sampling sites. Overall, the occurrence of different levels of both genomic and phenotypic differentiation between ecotypes within each site with several differentiated loci linked to relevant biological functions supports the presence of a continuum of divergence in lake trout.


Assuntos
Ecótipo , Truta/genética , Animais , Fluxo Gênico , Genômica , Lagos , América do Norte , Fenótipo , Polimorfismo de Nucleotídeo Único
6.
BMC Evol Biol ; 16(1): 219, 2016 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-27756206

RESUMO

BACKGROUND: Adaptive radiation involving a colonizing phenotype that rapidly evolves into at least one other ecological variant, or ecotype, has been observed in a variety of freshwater fishes in post-glacial environments. However, few studies consider how phenotypic traits vary with regard to neutral genetic partitioning along ecological gradients. Here, we present the first detailed investigation of lake trout Salvelinus namaycush that considers variation as a cline rather than discriminatory among ecotypes. Genetic and phenotypic traits organized along common ecological gradients of water depth and geographic distance provide important insights into diversification processes in a lake with high levels of human disturbance from over-fishing. RESULTS: Four putative lake trout ecotypes could not be distinguished using population genetic methods, despite morphological differences. Neutral genetic partitioning in lake trout was stronger along a gradient of water depth, than by locality or ecotype. Contemporary genetic migration patterns were consistent with isolation-by-depth. Historical gene flow patterns indicated colonization from shallow to deep water. Comparison of phenotypic (Pst) and neutral genetic variation (Fst) revealed that morphological traits related to swimming performance (e.g., buoyancy, pelvic fin length) departed more strongly from neutral expectations along a depth gradient than craniofacial feeding traits. Elevated phenotypic variance with increasing water depth in pelvic fin length indicated possible ongoing character release and diversification. Finally, differences in early growth rate and asymptotic fish length across depth strata may be associated with limiting factors attributable to cold deep-water environments. CONCLUSION: We provide evidence of reductions in gene flow and divergent natural selection associated with water depth in Lake Superior. Such information is relevant for documenting intraspecific biodiversity in the largest freshwater lake in the world for a species that recently lost considerable genetic diversity and is now in recovery. Unknown is whether observed patterns are a result of an early stage of incipient speciation, gene flow-selection equilibrium, or reverse speciation causing formerly divergent ecotypes to collapse into a single gene pool.


Assuntos
Ecossistema , Variação Genética , Lagos , Truta/genética , Animais , Fluxo Gênico , Genética Populacional , Geografia , Fenótipo , Densidade Demográfica , Seleção Genética , Água
7.
Mol Ecol Resour ; 22(2): 679-694, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34351050

RESUMO

Here, we present an annotated, chromosome-anchored, genome assembly for Lake Trout (Salvelinus namaycush) - a highly diverse salmonid species of notable conservation concern and an excellent model for research on adaptation and speciation. We leveraged Pacific Biosciences long-read sequencing, paired-end Illumina sequencing, proximity ligation (Hi-C) sequencing, and a previously published linkage map to produce a highly contiguous assembly composed of 7378 contigs (contig N50 = 1.8 Mb) assigned to 4120 scaffolds (scaffold N50 = 44.975 Mb). Long read sequencing data were generated using DNA from a female double haploid individual. 84.7% of the genome was assigned to 42 chromosome-sized scaffolds and 93.2% of Benchmarking Universal Single Copy Orthologues were recovered, putting this assembly on par with the best currently available salmonid genomes. Estimates of genome size based on k-mer frequency analysis were highly similar to the total size of the finished genome, suggesting that the entirety of the genome was recovered. A mitochondrial genome assembly was also produced. Self-versus-self synteny analysis allowed us to identify homeologs resulting from the salmonid specific autotetraploid event (Ss4R) as well as regions exhibiting delayed rediploidization. Alignment with three other salmonid genomes and the Northern Pike (Esox lucius) genome also allowed us to identify homologous chromosomes in related taxa. We also generated multiple resources useful for future genomic research on Lake Trout, including a repeat library and a sex-averaged recombination map. A novel RNA sequencing data set for liver tissue was also generated in order to produce a publicly available set of annotations for 49,668 genes and pseudogenes. Potential applications of these resources to population genetics and the conservation of native populations are discussed.


Assuntos
Cromossomos , Genoma , Animais , Cromossomos/genética , Feminino , Ligação Genética , Sintenia , Truta/genética
8.
Evol Appl ; 14(4): 1159-1177, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33897827

RESUMO

Pathways through which phenotypic variation among individuals arise can be complex. One assumption often made in relation to intraspecific diversity is that the stability or predictability of the environment will interact with expression of the underlying phenotypic variation. To address biological complexity below the species level, we investigated variability across years in morphology and annual growth increments between and within two sympatric lake charr Salvelinus namaycush ecotypes in Rush Lake, USA. A rapid phenotypic shift in body and head shape was found within a decade. The magnitude and direction of the observed phenotypic change were consistent in both ecotypes, which suggests similar pathways caused the variation over time. Over the same time period, annual growth increments declined for both lake charr ecotypes and corresponded with a consistent phenotypic shift of each ecotype. Despite ecotype-specific annual growth changes in response to winter conditions, the observed annual growth shift for both ecotypes was linked, to some degree, with variation in the environment. Particularly, a declining trend in regional cloud cover was associated with an increase of early-stage (ages 1-3) annual growth for lake charr of Rush Lake. Underlying mechanisms causing changes in growth rates and constrained morphological modulation are not fully understood. An improved knowledge of the biology hidden within the expression of phenotypic variation promises to clarify our understanding of temporal morphological diversity and instability.

9.
Ecol Evol ; 11(3): 1457-1475, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33598144

RESUMO

In a polyphenic species, differences in resource use are expected among ecotypes, and homogeneity in resource use is expected within an ecotype. Yet, using a broad resource spectrum has been identified as a strategy for fishes living in unproductive northern environments, where food is patchily distributed and ephemeral. We investigated whether specialization of trophic resources by individuals occurred within the generalist piscivore ecotype of lake trout from Great Bear Lake, Canada, reflective of a form of diversity. Four distinct dietary patterns of resource use within this lake trout ecotype were detected from fatty acid composition, with some variation linked to spatial patterns within Great Bear Lake. Feeding habits of different groups within the ecotype were not associated with detectable morphological or genetic differentiation, suggesting that behavioral plasticity caused the trophic differences. A low level of genetic differentiation was detected between exceptionally large-sized individuals and other piscivore individuals. We demonstrated that individual trophic specialization can occur within an ecotype inhabiting a geologically young system (8,000-10,000 yr BP), a lake that sustains high levels of phenotypic diversity of lake trout overall. The characterization of niche use among individuals, as done in this study, is necessary to understand the role that individual variation can play at the beginning of differentiation processes.

10.
Ecotoxicology ; 19(4): 751-60, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20033485

RESUMO

Decabromodiphenyl ether (BDE 209) is the main congener in the commonly used commercial flame retardant mixture, "deca-BDE". There is evidence showing that fish can debrominate BDE 209 into potentially more toxic congeners. The objective of this study was to evaluate BDE 209 uptake and its potential effects on juvenile lake whitefish (Coregonus clupeaformis). Lake whitefish were fed BDE 209 at four nominal concentrations (control, 0.1, 1, and 2 microg/g-diet) for 30 days. Livers and carcasses were analyzed for 11 polybrominated diphenyl ether (PBDE) congeners (BDE 47, 99, 100, 153, 154, 196, 197, 206, 207, 208, and 209) and daily otolith increment width was measured as an estimate of growth before and after exposure. Four congeners (BDE 206, 207, 208, and 209) were detected in livers and carcasses. Hepatic BDE 209 concentrations in the 1 and 2 microg/g treatments were significantly higher than in the control group (1.25 and 5.80 nmol/g-lipid compared to 0.183 nmol/g-lipid). The concentration of BDE 209 detected in the tissues of the control group resulted from BDE 209 in the base diets. Concentrations of all congeners from the 1 and 2 microg/g groups were higher in livers than carcasses, indicating the liver was the primary organ of BDE 209 accumulation. Compared to the fraction in diets, the molar fraction of BDE 209 was lower in livers and carcasses, whereas the fractions of BDE 206, 207, and 208 were higher. These different distributions of PBDE congeners resulted from differential adsorption and metabolism. One congener, BDE 206, could be a major metabolite from BDE 209 debromination. Otolith increment widths were narrower in fish from the highest diet concentration administered, suggesting BDE 209 may have affected growth rates. In conclusion, this in vivo study with lake whitefish showed that BDE 209 was debrominated into lower PBDE congeners and that exposure to 2 microg/g may have affected fish growth.


Assuntos
Monitoramento Ambiental/métodos , Retardadores de Chama/toxicidade , Éteres Difenil Halogenados/toxicidade , Fígado/efeitos dos fármacos , Membrana dos Otólitos/efeitos dos fármacos , Salmonidae/crescimento & desenvolvimento , Poluentes Químicos da Água/toxicidade , Ração Animal , Animais , Biotransformação , Carga Corporal (Radioterapia) , Relação Dose-Resposta a Droga , Retardadores de Chama/metabolismo , Água Doce/química , Éteres Difenil Halogenados/metabolismo , Fígado/metabolismo , Membrana dos Otólitos/crescimento & desenvolvimento , Salmonidae/metabolismo , Fatores de Tempo , Poluentes Químicos da Água/metabolismo
11.
PLoS One ; 13(3): e0193925, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29566015

RESUMO

Depth is usually considered the main driver of Lake Trout intraspecific diversity across lakes in North America. Given that Great Bear Lake is one of the largest and deepest freshwater systems in North America, we predicted that Lake Trout intraspecific diversity to be organized along a depth axis within this system. Thus, we investigated whether a deep-water morph of Lake Trout co-existed with four shallow-water morphs previously described in Great Bear Lake. Morphology, neutral genetic variation, isotopic niches, and life-history traits of Lake Trout across depths (0-150 m) were compared among morphs. Due to the propensity of Lake Trout with high levels of morphological diversity to occupy multiple habitat niches, a novel multivariate grouping method using a suite of composite variables was applied in addition to two other commonly used grouping methods to classify individuals. Depth alone did not explain Lake Trout diversity in Great Bear Lake; a distinct fifth deep-water morph was not found. Rather, Lake Trout diversity followed an ecological continuum, with some evidence for adaptation to local conditions in deep-water habitat. Overall, trout caught from deep-water showed low levels of genetic and phenotypic differentiation from shallow-water trout, and displayed higher lipid content (C:N ratio) and occupied a higher trophic level that suggested an potential increase of piscivory (including cannibalism) than the previously described four morphs. Why phenotypic divergence between shallow- and deep-water Lake Trout was low is unknown, especially when the potential for phenotypic variation should be high in deep and large Great Bear Lake. Given that variation in complexity of freshwater environments has dramatic consequences for divergence, variation in the complexity in Great Bear Lake (i.e., shallow being more complex than deep), may explain the observed dichotomy in the expression of intraspecific phenotypic diversity between shallow- vs. deep-water habitats. The ambiguity surrounding mechanisms driving divergence of Lake Trout in Great Bear Lake should be seen as reflective of the highly variable nature of ecological opportunity and divergent natural selection itself.


Assuntos
Variação Genética/genética , Truta/genética , Adaptação Fisiológica/genética , Animais , Biodiversidade , Canadá , Ecossistema , Genética Populacional/métodos , Lagos , América do Norte , Fenótipo , Seleção Genética/genética
12.
Ecol Evol ; 6(21): 7727-7741, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30128124

RESUMO

A generalist strategy, as an adaptation to environmental heterogeneity, is common in Arctic freshwater systems, often accompanied, however, by intraspecific divergence that promotes specialization in niche use. To better understand how resources may be partitioned in a northern system that supports intraspecific diversity of Lake Trout, trophic niches were compared among four shallow-water morphotypes in Great Bear Lake (N65° 56' 39″, W120° 50' 59″). Bayesian mixing model analyses of stable isotopes of carbon and nitrogen were conducted on adult Lake Trout. Major niche overlap in resource use among four Lake Trout morphotypes was found within littoral and pelagic zones, which raises the question of how such polymorphism can be sustained among opportunistic generalist morphotypes. Covariances of our morphological datasets were tested against δ13C and δ15N values. Patterns among morphotypes were mainly observed for δ15N. This link between ecological and morphological differentiation suggested that selection pressure(s) operate at the trophic level (δ15N), independent of habitat, rather than along the habitat-foraging opportunity axis (δ13C). The spatial and temporal variability of resources in Arctic lakes, such as Great Bear Lake, may have favored the presence of multiple generalists showing different degrees of omnivory along a weak benthic-pelagic gradient. Morphs 1-3 had more generalist feeding habits using both benthic and pelagic habitats than Morph 4, which was a top-predator specialist in the pelagic habitat. Evidence for frequent cannibalism in Great Bear Lake was found across all four morphotypes and may also contribute to polymorphism. We suggest that the multiple generalist morphs described here from Great Bear Lake are a unique expression of diversity due to the presumed constraints on the evolution of generalists and contrast with the development of multiple specialists, the standard response to intraspecific divergence.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa