Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Biomed Sci ; 23(1): 74, 2016 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-27784307

RESUMO

MicroRNAs (miRNAs), which are small non-coding RNAs expressed by almost all metazoans, have key roles in the regulation of cell differentiation, organism development and gene expression. Thousands of miRNAs regulating approximately 60 % of the total human genome have been identified. They regulate genetic expression either by direct cleavage or by translational repression of the target mRNAs recognized through partial complementary base pairing. The active and functional unit of miRNA is its complex with Argonaute proteins known as the microRNA-induced silencing complex (miRISC). De-regulated miRNA expression in the human cell may contribute to a diverse group of disorders including cancer, cardiovascular dysfunctions, liver damage, immunological dysfunction, metabolic syndromes and pathogenic infections. Current day studies have revealed that miRNAs are indeed a pivotal component of host-pathogen interactions and host immune responses toward microorganisms. miRNA is emerging as a tool for genetic study, therapeutic development and diagnosis for human pathogenic infections caused by viruses, bacteria, parasites and fungi. Many pathogens can exploit the host miRNA system for their own benefit such as surviving inside the host cell, replication, pathogenesis and bypassing some host immune barriers, while some express pathogen-encoded miRNA inside the host contributing to their replication, survival and/or latency. In this review, we discuss the role and significance of miRNA in relation to some pathogenic viruses.


Assuntos
Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , MicroRNAs/genética , Viroses/genética , Fenômenos Fisiológicos Virais , Humanos , MicroRNAs/metabolismo , Viroses/virologia
2.
Biochim Biophys Acta ; 1840(5): 1583-91, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24291688

RESUMO

BACKGROUND: Aquaporins (AQPs), members of a superfamily of transmembrane channel proteins, are ubiquitous in all domains of life. They fall into a number of branches that can be functionally categorized into two major sub-groups: i) orthodox aquaporins, which are water-specific channels, and ii) aquaglyceroporins, which allow the transport of water, non-polar solutes, such as urea or glycerol, the reactive oxygen species hydrogen peroxide, and gases such as ammonia, carbon dioxide and nitric oxide and, as described in this review, metalloids. SCOPE OF REVIEW: This review summarizes the key findings that AQP channels conduct bidirectional movement of metalloids into and out of cells. MAJOR CONCLUSIONS: As(OH)3 and Sb(OH)3 behave as inorganic molecular mimics of glycerol, a property that allows their passage through AQP channels. Plant AQPs also allow the passage of boron and silicon as their hydroxyacids, boric acid (B(OH)3) and orthosilicic acid (Si(OH)4), respectively. Genetic analysis suggests that germanic acid (GeO2) is also a substrate. While As(III), Sb(III) and Ge(IV) are toxic metalloids, borate (B(III)) and silicate (Si(IV)) are essential elements in higher plants. GENERAL SIGNIFICANCE: The uptake of environmental metalloids by aquaporins provides an understanding of (i) how toxic elements such as arsenic enter the food chain; (ii) the delivery of arsenic and antimony containing drugs in the treatment of certain forms of leukemia and chemotherapy of diseases caused by pathogenic protozoa; and (iii) the possibility that food plants such as rice could be made safer by genetically modifying them to exclude arsenic while still accumulating boron and silicon. This article is part of a Special Issue entitled Aquaporins.


Assuntos
Aquagliceroporinas/metabolismo , Arsênio/metabolismo , Animais , Antimônio/metabolismo , Humanos
3.
Mol Microbiol ; 88(1): 189-202, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23421749

RESUMO

Antimonials are still the mainstay of treatment against leishmaniasis but drug resistance is increasing. We carried out short read next-generation sequencing (NGS) and comparative genomic hybridization (CGH) of three independent Leishmania major antimony-resistant mutants. Copy number variations were consistently detected with both NGS and CGH. A major attribute of antimony resistance was a novel terminal deletion of variable length (67 kb to 204 kb) of the polyploid chromosome 31 in the three mutants. Terminal deletions in two mutants occurred at the level of inverted repeated sequences. The AQP1 gene coding for an aquaglyceroporin was part of the deleted region and its transfection into resistant mutants reverted resistance to SbIII. We also highlighted an intrachromosomal amplification of a subtelomeric locus on chromosome 34 in one mutant. This region encoded for ascorbate-dependent peroxidase (APX) and glucose-6-phosphate dehydrogenase (G6PDH). Overexpression of these genes in revertant backgrounds demonstrated resistance to SbIII and protection from reactive oxygen species (ROS). Generation of a G6PDH null mutant in one revertant exhibited SbIII sensitivity and a decreased protection of ROS. Our genomic analyses and functional validation highlighted novel genomic rearrangements, functionally important resistant loci and the implication of new genes in antimony resistance in Leishmania.


Assuntos
Antimônio/farmacologia , Cromossomos/genética , Resistência a Medicamentos/genética , Deleção de Genes , Leishmania/genética , Telômero/genética , Aquaporina 1/metabolismo , Mapeamento Cromossômico , Hibridização Genômica Comparativa , Resistência a Medicamentos/efeitos dos fármacos , Loci Gênicos/genética , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/metabolismo , Leishmania/efeitos dos fármacos , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Reprodutibilidade dos Testes , Análise de Sequência de DNA
4.
Mol Microbiol ; 85(6): 1204-18, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22779703

RESUMO

Leishmania major aquaglyceroporin (LmjAQP1) adventitiously facilitates the uptake of antimonite [Sb(III)], an active form of Pentostam® or Glucantime®, which are the first line of defence against all forms of leishmaniasis. The present paper shows that LmjAQP1 activity is modulated by the mitogen-activated protein kinase, LmjMPK2. Leishmania parasites coexpressing LmjAQP1 and LmjMPK2 show increased Sb(III) uptake and increased Sb(III) sensitivity. When subjected to a hypo-osmotic stress, these cells show faster volume recovery than cells expressing LmjAQP1 alone. LmjAQP1 is phosphorylated in vivo at Thr-197 and this phosphorylation requires LmjMPK2 activity. Lys-42 of LmjMPK2 is critical for its kinase activity. Cells expressing altered T197A LmjAQP1 or K42A LmjMPK2 showed decreased Sb(III) influx and a slower volume recovery than cells expressing wild-type proteins. Phosphorylation of LmjAQP1 led to a decrease in its turnover rate affecting LmjAQP1 activity. Although LmjAQP1 is localized to the flagellum of promastigotes, upon phosphorylation, it is relocalized to the entire surface of the parasite. Leishmania mexicana promastigotes with an MPK2 deletion showed reduced Sb(III) uptake and slower volume recovery than wild-type cells. This is the first report where a parasite aquaglyceroporin activity is post-translationally modulated by a mitogen-activated protein kinase.


Assuntos
Aquaporina 1/metabolismo , Leishmania major/enzimologia , Leishmania major/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Antimônio/metabolismo , Antiprotozoários/metabolismo , Deleção de Genes , Leishmania major/efeitos dos fármacos , Leishmania mexicana/enzimologia , Leishmania mexicana/genética , Testes de Sensibilidade Parasitária
5.
Cell Physiol Biochem ; 32(4): 880-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24217645

RESUMO

BACKGROUND: Trypanosoma brucei is a primitive parasitic protozoan that thrives in diverse environments such as the midgut of the tsetse fly and the blood of a mammalian host. For an adequate adaptation to these environments, the parasite's aquaglyceroporins play an important role. METHODS AND RESULTS: In order to test their ability to transport trivalent arsenic and antimony, we expressed the three known Trypanosoma brucei aquaglyceroporins (TbAQPs) in the heterologous systems of yeast null aquaporin mutant and Xenopus laevis oocytes. For both expression systems, we found a pH dependent intracellular accumulation of As(III) or Sb(III) mediated by all of the three TbAQPs, with the exception of TbAQP1-As(III) uptake. Additionally, we observed that Trypanosoma brucei aquaglyceroporins allow the passage of As(III) in both directions. CONCLUSION: Taken together, these results demonstrated that T. brucei aquaglyceroporins can serve as entry routes for As(III) and Sb(III) into the parasitic cell, and that this uptake is pH sensitive. Therefore, aquaporins of protozoan parasites may be considered useful as a vehicle for drug delivery.


Assuntos
Antimônio/metabolismo , Aquagliceroporinas/metabolismo , Arsenitos/metabolismo , Trypanosoma brucei brucei/metabolismo , Transporte Biológico , Concentração de Íons de Hidrogênio
6.
Proc Natl Acad Sci U S A ; 106(37): 15956-60, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19805235

RESUMO

Expressed in liver, aquaglyceroporin-9 (AQP9) is permeated by glycerol, arsenite, and other small, neutral solutes. To evaluate a possible protective role, AQP9-null mice were evaluated for in vivo arsenic toxicity. After injection with NaAsO(2), AQP9-null mice suffer reduced survival rates (LD(50), 12 mg/kg) compared with WT mice (LD(50), 15 mg/kg). The highest tissue level of arsenic is in heart, with AQP9-null mice accumulating 10-20 times more arsenic than WT mice. Within hours after NaAsO(2) injection, AQP9-null mice sustain profound bradycardia, despite normal serum electrolytes. Increased arsenic levels are also present in liver, lung, spleen, and testis of AQP9-null mice. Arsenic levels in the feces and urine of AQP9-null mice are only approximately 10% of the WT levels, and reduced clearance of multiple arsenic species by the AQP9-null mice suggests that AQP9 is involved in the export of multiple forms of arsenic. Immunohistochemical staining of liver sections revealed that AQP9 is most abundant in basolateral membrane of hepatocytes adjacent to the sinusoids. AQP9 is not detected in heart or kidney by PCR or immunohistochemistry. We propose that AQP9 provides a route for excretion of arsenic by the liver, thereby providing partial protection of the whole animal from arsenic toxicity.


Assuntos
Aquaporinas/deficiência , Arsênio/farmacocinética , Arsênio/toxicidade , Animais , Aquaporinas/genética , Aquaporinas/metabolismo , Arsenitos/farmacocinética , Arsenitos/toxicidade , Eletrocardiografia , Sistema de Condução Cardíaco/efeitos dos fármacos , Sistema de Condução Cardíaco/fisiopatologia , Imuno-Histoquímica , Dose Letal Mediana , Masculino , Taxa de Depuração Metabólica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/metabolismo , Compostos de Sódio/farmacocinética , Compostos de Sódio/toxicidade , Distribuição Tecidual
7.
Biochemistry ; 49(4): 802-9, 2010 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-20025242

RESUMO

A number of eukaryotic enzymes that function as arsenate reductases are homologues of the catalytic domain of the human Cdc25 phosphatase. For example, the Leishmania major enzyme LmACR2 is both a phosphatase and an arsenate reductase, and its structure bears similarity to the structure of the catalytic domain of human Cdc25 phosphatase. These reductases contain an active site C-X(5)-R signature motif, where C is the catalytic cysteine, the five X residues form a phosphate binding loop, and R is a highly conserved arginine, which is also present in human Cdc25 phosphatases. We therefore investigated the possibility that the three human Cdc25 isoforms might have adventitious arsenate reductase activity. The sequences for the catalytic domains of Cdc25A, -B, and -C were cloned individually into a prokaryotic expression vector, and their gene products were purified from a bacterial host using nickel affinity chromatography. While each of the three Cdc25 catalytic domains exhibited phosphatase activity, arsenate reductase activity was observed only with Cdc25B and -C. These two enzymes reduced inorganic arsenate but not methylated pentavalent arsenicals. Alteration of either the cysteine and arginine residues of the Cys-X(5)-Arg motif led to the loss of both reductase and phosphatase activities. Our observations suggest that Cdc25B and -C may adventitiously reduce arsenate to the more toxic arsenite and may also provide a framework for identifying other human protein tyrosine phosphatases containing the active site Cys-X(5)-Arg loop that might moonlight as arsenate reductases.


Assuntos
Arseniato Redutases/metabolismo , Fosfatases cdc25/química , Fosfatases cdc25/metabolismo , Sítios de Ligação , Domínio Catalítico , Humanos , Isoenzimas/química , Isoenzimas/metabolismo , Estrutura Terciária de Proteína
8.
Adv Exp Med Biol ; 679: 57-69, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20666224

RESUMO

Metalloids can severely harm human physiology in a toxicological sense if taken up from the environment in acute high doses or chronically. However, arsenic or antimony containing drugs are still being used as treatment and are often the sole regime for certain forms of cancer, mainly types of leukemia and diseases caused by parasites, such as sleeping sickness or leishmaniasis. In this chapter, we give an outline of the positive effects of arsenicals and antimonials against such diseases, we summarize data on uptake pathways through human and parasite aquaglyceroporins and we discuss the progress and options in the development of therapeutic aquaporin and aquaglyceroporin inhibitor compounds.


Assuntos
Aquagliceroporinas/química , Leucemia/terapia , Metais/química , Doenças Parasitárias/terapia , Animais , Aquagliceroporinas/uso terapêutico , Aquaporinas/química , Arsenicais/metabolismo , Transporte Biológico , Humanos , Modelos Biológicos , Neoplasias/metabolismo , Parasitos/metabolismo , Permeabilidade
9.
Mol Microbiol ; 70(6): 1477-86, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19019150

RESUMO

The Leishmania major aquaglyceroporin, LmAQP1, is responsible for the transport of antimonite [Sb(III)], an activated form of Pentostam or Glucantime. Downregulation of LmAQP1 provides resistance to trivalent antimony compounds and increased expression of LmAQP1 in drug-resistant parasites can reverse the resistance. Besides metalloid transport, LmAQP1 is also permeable to water, glycerol, methylglyoxal, dihydroxyacetone and sugar alcohols. LmAQP1 also plays a physiological role in volume regulation and osmotaxis. In this study, we examined the role of extracellular C-loop glutamates (Glu143, Glu145 and Glu152) in LmAQP1 activity. Alteration of both Glu143 and Glu145 to alanines did not affect either the biochemical or physiological properties of the protein, suggesting that neither residue is critical for LmAQP1 activity. Alteration of Glu152 to alanine, aspartate and glutamine affected metalloid transport in the order, wild-type > E152Q > E152D > E152A. In fact, axenic amastigotes expressing E152A LmAQP1 accumulated negligible levels of either arsenite [As(III)] or Sb(III). Alteration of Glu152 significantly affected volume regulation and osmotaxis, suggesting that Glu152 is critical for the physiological activity of the parasite. More importantly, alteration of Glu152 to alanine did not affect glycerol permeability. Although the metalloids, As(III) and Sb(III), are believed to be transported through aquaglyceroporin channels as they behave as inorganic molecular mimic of glycerol, this is the first report where metalloid and glycerol transport can be dissected by a single mutation at the extracellular pore entry of LmAQP1 channel.


Assuntos
Antimônio/metabolismo , Aquaporina 1/fisiologia , Glicerol/metabolismo , Leishmania major/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Aquaporina 1/química , Aquaporina 1/genética , Transporte Biológico , Ácido Glutâmico/genética , Ácido Glutâmico/metabolismo , Leishmania major/genética , Dados de Sequência Molecular , Mutação , Oócitos , Permeabilidade , Estrutura Terciária de Proteína/genética , Xenopus
10.
Handb Exp Pharmacol ; (190): 309-25, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19096785

RESUMO

Aquaglyceroporin (AQP) channels facilitate the diffusion of a wide range of neutral solutes, including water, glycerol, and other small uncharged solutes. More recently, AQPs have been shown to allow the passage of trivalent arsenic and antimony compounds. Arsenic and antimony are metalloid elements. At physiological pH, the trivalent metalloids behave as molecular mimics of glycerol, and are conducted through AQP channels. Arsenicals and antimonials are extremely toxic to cells. Despite their toxicity, both metalloids are used as chemotherapeutic agents for the treatment of cancer and protozoan parasitic diseases. The metalloid homeostasis property of AQPs can be a mixed blessing. In some cases, AQPs form part of the detoxification pathway, and extrude metalloids from cells. In other instances, AQPs allow the transport of metalloids into cells, thereby conferring sensitivity. Understanding the factors that modulate AQP expression will aid in a better understanding of metalloid toxicity and also provide newer approaches to metalloid based chemotherapy.


Assuntos
Antimônio/metabolismo , Antineoplásicos/metabolismo , Antiprotozoários/metabolismo , Aquagliceroporinas/metabolismo , Arsenicais/metabolismo , Animais , Antimônio/farmacologia , Antimônio/toxicidade , Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Antiprotozoários/farmacologia , Antiprotozoários/toxicidade , Arsenicais/farmacologia , Transporte Biológico , Células Eucarióticas/metabolismo , Humanos , Células Procarióticas/metabolismo
11.
FEBS Lett ; 580(16): 3889-94, 2006 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-16797549

RESUMO

The bacterial ArsA ATPase is the catalytic component of an oxyanion pump that is responsible for resistance to arsenicals and antimonials. Homologues of the bacterial ArsA ATPase are widespread in nature. We had earlier identified the mouse homologue (Asna1) that exhibits 27% identity to the bacterial ArsA ATPase. To identify the physiological role of the protein, heterozygous Asna1 knockout mice (Asna1+/-) were generated by homologous recombination. The Asna1+/- mice displayed similar phenotype as the wild-type mice. However, early embryonic lethality was observed in homozygous Asna1 knockout embryos, between E3.5 (E=embryonic day) and E8.5 stage. These findings indicate that Asna1 plays a crucial role during early embryonic development.


Assuntos
Perda do Embrião/genética , Marcação de Genes , Bombas de Íon/genética , Complexos Multienzimáticos/genética , Animais , ATPases Transportadoras de Arsenito , Éxons/genética , Perfilação da Expressão Gênica , Genótipo , Bombas de Íon/deficiência , Camundongos , Complexos Multienzimáticos/deficiência , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Recombinação Genética/genética
12.
Mol Biochem Parasitol ; 148(2): 161-8, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16644029

RESUMO

LmACR2 is the first identified antimonate reductase responsible for the reduction of pentavalent antimony in pentostam to the active trivalent form of the drug in Leishmania. LmACR2 is a homologue of the yeast arsenate reductase Acr2p and Cdc25 phosphatases and has the HC[X]5R phosphatase motif. Purified LmACR2 exhibited phosphatase activity in vitro and was able to dephosphorylate a phosphotyrosine residue from a synthetic peptide. This phosphatase activity was inhibited by classical inhibitors such as orthovanadate. LmACR2-catalyzed phosphatase activity was inhibited by either antimonate or arsenate. Site-directed mutagenesis experiments showed that the H74C[X]5R81 motif was involved in catalysis. This is the first report of a metalloid reductase with a bifunctional role in protein tyrosine phosphatase activity. Leishmania is never exposed to metalloids during its life cycle. It is therefore unlikely that it would evolve an enzyme exclusively for drug activation. We propose that the physiological function of LmACR2 is to dephosphorylate phosphotyrosine residues in leishmanial proteins.


Assuntos
Antimônio/metabolismo , Leishmania major/enzimologia , Oxirredutases/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Concentração de Íons de Hidrogênio , Cinética , Leishmania major/genética , Dados de Sequência Molecular , Oxirredutases/química , Oxirredutases/genética , Oxirredutases/isolamento & purificação , Proteínas Tirosina Fosfatases/química , Proteínas Tirosina Fosfatases/genética , Alinhamento de Sequência
13.
Artigo em Inglês | MEDLINE | ID: mdl-17012788

RESUMO

Arsenic is present in the biosphere owing either to the presence of pesticides and herbicides used in agricultural and industrial activities or to leaching from geological formations. The health effects of prolonged exposure to arsenic can be devastating and may lead to various forms of cancer. Antimony(V), which is chemically very similar to arsenic, is used instead in the treatment of leishmaniasis, an infection caused by the protozoan parasite Leishmania sp.; the reduction of pentavalent antimony contained in the drug Pentostam to the active trivalent form arises from the presence in the Leishmania genome of a gene, LmACR2, coding for the protein LmACR2 (14.5 kDa, 127 amino acids) that displays weak but significant sequence similarity to the catalytic domain of Cdc25 phosphatase and to rhodanese enzymes. For structural characterization, LmACR2 was overexpressed, purified to homogeneity and crystallized in a trigonal space group (P321 or P3(1)21/P3(2)21). The protein crystallized in two distinct trigonal crystal forms, with unit-cell parameters a = b = 111.0, c = 86.1 A and a = b = 111.0, c = 175.6 A, respectively. At a synchrotron beamline, the diffraction pattern extended to a resolution limit of 1.99 A.


Assuntos
Bombas de Íon/química , Leishmania major/enzimologia , Complexos Multienzimáticos/química , Sequência de Aminoácidos , Animais , Antimônio/química , Antimônio/metabolismo , ATPases Transportadoras de Arsenito , Clonagem Molecular , Cristalização , Cristalografia por Raios X , Bombas de Íon/genética , Bombas de Íon/isolamento & purificação , Leishmania major/química , Dados de Sequência Molecular , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/isolamento & purificação , Alinhamento de Sequência
14.
FEMS Microbiol Rev ; 26(3): 311-25, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12165430

RESUMO

Arsenic compounds have been abundant at near toxic levels in the environment since the origin of life. In response, microbes have evolved mechanisms for arsenic resistance and enzymes that oxidize As(III) to As(V) or reduce As(V) to As(III). Formation and degradation of organoarsenicals, for example methylarsenic compounds, occur. There is a global arsenic geocycle, where microbial metabolism and mobilization (or immobilization) are important processes. Recent progress in studies of the ars operon (conferring resistance to As(III) and As(V)) in many bacterial types (and related systems in Archaea and yeast) and new understanding of arsenite oxidation and arsenate reduction by respiratory-chain-linked enzyme complexes has been substantial. The DNA sequencing and protein crystal structures have established the convergent evolution of three classes of arsenate reductases (that is classes of arsenate reductases are not of common evolutionary origin). Proposed reaction mechanisms in each case involve three cysteine thiols and S-As bond intermediates, so convergent evolution to similar mechanisms has taken place.


Assuntos
Escherichia coli/metabolismo , Bombas de Íon/metabolismo , Complexos Multienzimáticos/metabolismo , Staphylococcus/metabolismo , Arseniato Redutases , Arsenicais/metabolismo , Arsenicais/farmacologia , ATPases Transportadoras de Arsenito , Resistência Microbiana a Medicamentos , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Óperon , Saccharomyces/efeitos dos fármacos , Saccharomyces/enzimologia , Saccharomyces/genética , Saccharomyces/metabolismo , Proteínas de Saccharomyces cerevisiae , Staphylococcus/efeitos dos fármacos , Staphylococcus/enzimologia , Staphylococcus/genética
15.
Mol Biochem Parasitol ; 201(2): 139-45, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26259900

RESUMO

Leishmania major aquaglyceroporin (AQP1) is an adventitious metalloid channel that allows the bidirectional movement of arsenite and antimonite. Here we demonstrate that AQP1 is subjected to proteasome-dependent degradation. Treatment of Leishmania promastigotes with the proteasome inhibitor MG132 resulted in increased AQP1 accumulation. Site-directed mutagenesis in AQP1 revealed that alteration of lysine 12 to either alanine or arginine improves protein stability. AQP1 expression is stabilized by mitogen-activated protein kinase 2 (MPK2). Cells expressing a dominant-negative MPK2 mutant exhibited severely reduced AQP1 expression, which could be reversed upon addition of MG132. Interestingly, the dominant-negative MPK2 mutant could not destabilize either AQP1K12A or AQP1K12R. While stabilization of AQP1 by MPK2 leads to its relocalization from flagellum to the entire surface of the parasite, altered AQP1K12A or AQP1K12R was restricted to flagellum only. Our data demonstrate that lysine 12 is targeted for proteasomal degradation of AQP1 and plays an integral role in subcellular localization of AQP1 as well as its interaction with MPK2. This work also raises the possibility that a strategy combining antimonial with a proteasome inhibitor may be an effective combination regimen against diverse forms of leishmaniasis.


Assuntos
Aquagliceroporinas/metabolismo , Leishmania major/fisiologia , Lisina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Substituição de Aminoácidos , Aquagliceroporinas/genética , Análise Mutacional de DNA , Leishmania major/genética , Leupeptinas/metabolismo , Lisina/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mutagênese Sítio-Dirigida , Estabilidade Proteica , Transporte Proteico , Proteólise
16.
Mol Biochem Parasitol ; 201(2): 108-11, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26222914

RESUMO

The Leishmania aquaglyceroporin AQP1 plays an important physiological role in water and uncharged polar solutes transport, volume regulation, osmotaxis, and is a key determinant of antimony resistance. By targeted gene disruption, we generated a Leishmania major promastigote AQP1 null mutant. This required several attempts but a chromosomal null AQP1 mutant was obtained by loss of heterozygosity in the presence of a rescue plasmid encoding AQP1. Growth in the absence of selection led to the loss of the rescuing plasmid, indicating that AQP1 is not essential for Leishmania viability. The AQP1-null mutant was resistant to antimonyl tartrate (SbIII) and arsenite (AsIII) due to a decrease import of these metalloids. It also exhibited alterations in its osmoregulation abilities compared with wild-type cells. This is the first report of the generation of a genetic AQP1 null mutant in Leishmania parasite, confirming its physiological function and role in resistance to antimonials, the therapeutic mainstay against Leishmania.


Assuntos
Aquagliceroporinas/deficiência , Técnicas de Inativação de Genes , Leishmania major/genética , Tartarato de Antimônio e Potássio/toxicidade , Arsenitos/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Resistência a Medicamentos , Leishmania major/efeitos dos fármacos , Leishmania major/fisiologia , Osmorregulação
17.
PLoS Negl Trop Dis ; 9(2): e0003500, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25714343

RESUMO

Leishmania is a digenetic protozoan parasite causing leishmaniasis in humans. The different clinical forms of leishmaniasis are caused by more than twenty species of Leishmania that are transmitted by nearly thirty species of phlebotomine sand flies. Pentavalent antimonials (such as Pentostam or Glucantime) are the first line drugs for treating leishmaniasis. Recent studies suggest that pentavalent antimony (Sb(V)) acts as a pro-drug, which is converted to the more active trivalent form (Sb(III)). However, sensitivity to trivalent antimony varies among different Leishmania species. In general, Leishmania species causing cutaneous leishmaniasis (CL) are more sensitive to Sb(III) than the species responsible for visceral leishmaniasis (VL). Leishmania aquaglyceroporin (AQP1) facilitates the adventitious passage of antimonite down a concentration gradient. In this study, we show that Leishmania species causing CL accumulate more antimonite, and therefore exhibit higher sensitivity to antimonials, than the species responsible for VL. This species-specific differential sensitivity to antimonite is directly proportional to the expression levels of AQP1 mRNA. We show that the stability of AQP1 mRNA in different Leishmania species is regulated by their respective 3'-untranslated regions. The differential regulation of AQP1 mRNA explains the distinct antimonial sensitivity of each species.


Assuntos
Regiões 3' não Traduzidas/genética , Antiprotozoários/uso terapêutico , Aquaporina 1/genética , Resistência a Medicamentos/genética , Regulação da Expressão Gênica/genética , Leishmania/genética , Antimônio/química , Antimônio/metabolismo , Gluconato de Antimônio e Sódio/uso terapêutico , Aquagliceroporinas/metabolismo , Movimento Celular/genética , Humanos , Leishmania/classificação , Leishmania/efeitos dos fármacos , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/parasitologia , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/parasitologia , Meglumina/uso terapêutico , Antimoniato de Meglumina , Compostos Organometálicos/uso terapêutico , RNA Mensageiro/genética , RNA de Protozoário/genética
18.
Environ Health Perspect ; 110 Suppl 5: 745-8, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12426124

RESUMO

The ubiquity of arsenic in the environment has led to the evolution of enzymes for arsenic detoxification. An initial step in arsenic metabolism is the enzymatic reduction of arsenate [As(V)] to arsenite [As(III)]. At least three families of arsenate reductase enzymes have arisen, apparently by convergent evolution. The properties of two of these are described here. The first is the prokaryotic ArsC arsenate reductase of Escherichia coli. The second, Acr2p of Saccharomyces cerevisiae, is the only identified eukaryotic arsenate reductase. Although unrelated to each other, both enzymes receive their reducing equivalents from glutaredoxin and reduced glutathione. The structure of the bacterial ArsC has been solved at 1.65 A. As predicted from its biochemical properties, ArsC structures with covalent enzyme-arsenic intermediates that include either As(V) or As(III) were observed. The yeast Acr2p has an active site motif HC(X)(5)R that is conserved in protein phosphotyrosine phosphatases and rhodanases, suggesting that these three groups of enzymes may have evolved from an ancestral oxyanion-binding protein.


Assuntos
Arsênio/metabolismo , Escherichia coli/enzimologia , Bombas de Íon/farmacologia , Complexos Multienzimáticos/farmacologia , Saccharomyces cerevisiae/enzimologia , Arseniato Redutases , Arseniatos/farmacologia , ATPases Transportadoras de Arsenito , Resistência a Medicamentos , Oxirredução , Proteínas de Saccharomyces cerevisiae
19.
FEMS Microbiol Lett ; 227(2): 295-301, 2003 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-14592722

RESUMO

ArsC from plasmid R773 catalyzes reduction of arsenate in Escherichia coli. Arg-60, Arg-94 and Arg-107 are near the active site residue Cys-12, suggesting that they form an anion binding pocket in the active site and/or participate in catalysis. These three arginine residues were altered to a variety of other residues by site-directed mutagenesis. Only mutants with arginine-to-lysine substitutions conferred arsenate resistance in vivo, although purified R60A, R60E, R60K exhibited varying levels of enzymatic activity. The data support the hypothesis that this triad of arginine residues is involved in arsenate binding and transition-state stabilization.


Assuntos
Arginina/metabolismo , Escherichia coli/enzimologia , Bombas de Íon/metabolismo , Complexos Multienzimáticos/metabolismo , Arginina/genética , Arseniatos/farmacologia , ATPases Transportadoras de Arsenito , Resistência Microbiana a Medicamentos , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Bombas de Íon/química , Cinética , Complexos Multienzimáticos/química , Plasmídeos/metabolismo
20.
Mol Biochem Parasitol ; 175(1): 83-90, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20888371

RESUMO

Leishmania major aquaglyceroporin LmAQP1 allows adventitious passage of antimonite, an activated form of the drug Pentostam, which is used as the first line treatment for leishmaniasis. The extracellular C-loop of an aquaglyceroporin confers substrate specificity. Alteration of Glu125 to serine in the Plasmodium falciparum aquaglyceroporin PfAQP has been shown to selectively affect water but not glycerol permeability. The C-loop of LmAQP1 is twelve residues longer than PfAQP, and Ala163 is at an equivalent position as Glu125 of PfAQP. The role of Ala163 in LmAQP1 solute permeability was investigated. Alteration of Ala163 to serine or threonine did not significantly affect conduction of solutes. However, alteration to aspartate, glutamate, and glutamine blocked passage of water, glycerol, and other organic solutes. While LmAQP1 is a mercurial insensitive water channel, mutation of the adjacent threonine (Thr164) to cysteine led to inhibition of water passage by Hg(2+). This inhibition could be reversed upon addition of ß-mercaptoethanol. These data suggest that, unlike Glu125 (PfAQP), Ala163 is not involved in stabilization of the C-loop and selective solute permeability. Ala163 is located near the pore mouth of the channel, and replacement of Ala163 by bulkier residue sterically hinders the passage of solutes. Alteration of Ala163 to serine or threonine affected metalloid uptake in the order, wild-type>A163S>A163T. Metalloid conduction was near completely blocked when Ala163 was mutagenized to aspartate, glutamate, or glutamine. Mutations such as A163S and A163T that reduced the permeability to antimonite, without a significant loss in water or solute conductivity raises the possibility that, subtle changes in the side chain of the amino acid residue in position 163 of LmAQP1 may play a role in drug resistance.


Assuntos
Alanina/genética , Antimônio/metabolismo , Aquagliceroporinas/genética , Aquagliceroporinas/metabolismo , Resistência a Medicamentos , Leishmania major/genética , Leishmania major/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Inibidores Enzimáticos/metabolismo , Glicerol/metabolismo , Mercaptoetanol/metabolismo , Mercúrio/metabolismo , Metaloides/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Compostos Orgânicos/metabolismo , Estrutura Terciária de Proteína , Substâncias Redutoras/metabolismo , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa