Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(14): e2316101121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38547068

RESUMO

Though YB6 and LaB6 share the same crystal structure, atomic valence electron configuration, and phonon modes, they exhibit drastically different phonon-mediated superconductivity. YB6 superconducts below 8.4 K, giving it the second-highest critical temperature of known borides, second only to MgB2. LaB6 does not superconduct until near-absolute zero temperatures (below 0.45 K), however. Though previous studies have quantified the canonical superconductivity descriptors of YB6's greater Fermi-level (Ef) density of states and higher electron-phonon coupling (EPC), the root of this difference has not been assessed with full detail of the electronic structure. Through chemical bonding, we determine low-lying, unoccupied 4f atomic orbitals in lanthanum to be the key difference between these superconductors. These orbitals, which are not accessible in YB6, hybridize with π B-B bonds and bring this π-system lower in energy than the σ B-B bonds otherwise at Ef. This inversion of bands is crucial: the optical phonon modes we show responsible for superconductivity cause the σ-orbitals of YB6 to change drastically in overlap, but couple weakly to the π-orbitals of LaB6. These phonons in YB6 even access a crossing of electronic states, indicating strong EPC. No such crossing in LaB6 is observed. Finally, a supercell (the M k-point) is shown to undergo Peierls-like effects in YB6, introducing additional EPC from both softened acoustic phonons and the same electron-coupled optical modes as in the unit cell. Overall, we find that LaB6 and YB6 have fundamentally different mechanisms of superconductivity, despite their otherwise near-identity.

2.
J Chem Phys ; 160(14)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38591678

RESUMO

Despite the importance of the one-particle picture provided by the orbital paradigm, a rigorous understanding of the spatial distribution of electrons in molecules is still of paramount importance to chemistry. Considerable progress has been made following the introduction of topological approaches, capable of partitioning space into chemically meaningful regions. They usually provide atomic partitions, for example, through the attraction basins of the electron density in the quantum theory of atoms in molecules (QTAIM) or electron-pair decompositions, as in the case of the electron localization function (ELF). In both cases, the so-called electron distribution functions (EDFs) provide a rich statistical description of the electron distribution in these spatial domains. Here, we take the EDF concept to a new fine-grained limit by calculating EDFs in the QTAIM ∩ ELF intersection domains. As shown in AHn systems based on main group elements, as well as in the CO, NO, and BeO molecules, this approach provides an exquisitely detailed picture of the electron distribution in molecules, allowing for an insightful combination of the distribution of electrons between Lewis entities (such as bonds and lone pairs) and atoms at the same time. Besides mean-field calculations, we also explore the impact of electron correlation through Hartree-Fock (HF), density functional theory (DFT) (B3LYP), and CASSCF calculations.

3.
Inorg Chem ; 62(32): 12947-12953, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37505485

RESUMO

The pentafluoroorthotellurate group (teflate, OTeF5) is considered as a bulky analogue of fluoride, yet its coordination behavior in transition metal complexes is not fully understood. By reaction of [CoCl4]2- and neat ClOTeF5, we synthesized the first cobalt teflate complex, [Co(OTeF5)4]2-, which exhibits moisture-resistant Co-OTeF5 bonds. Through a combined experimental and theoretical (DFT and NEVPT2) study, the properties and electronic structure of this species have been investigated. It exhibits a distorted tetrahedral structure around the cobalt center and can be described as a d7 system with a quartet (S = 3/2) ground state. A comparative bonding analysis of the (pseudo)tetrahedral [CoX4]2- anions (X = OTeF5, F, Cl) revealed that the strength of the Co-X interaction is similar in the three cases, being the strongest in [Co(OTeF5)4]2-. In addition, an analysis of the charge of the Co center reinforced the similar electron-withdrawing properties of the teflate and fluoride ligands. Therefore, the [Co(OTeF5)4]2- anion constitutes an analogue of the polymeric [CoF4]2- in terms of electronic properties, but with a monomeric structure.

4.
Phys Chem Chem Phys ; 25(15): 10231-10262, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36994471

RESUMO

In this perspective, we review some recent advances in the concept of atoms-in-molecules from a real space perspective. We first introduce the general formalism of atomic weight factors that allows unifying the treatment of fuzzy and non-fuzzy decompositions under a common algebraic umbrella. We then show how the use of reduced density matrices and their cumulants allows partitioning any quantum mechanical observable into atomic or group contributions. This circumstance provides access to electron counting as well as energy partitioning, on the same footing. We focus on how the fluctuations of atomic populations, as measured by the statistical cumulants of the electron distribution functions, are related to general multi-center bonding descriptors. Then we turn our attention to the interacting quantum atom energy partitioning, which is briefly reviewed since several general accounts on it have already appeared in the literature. More attention is paid to recent applications to large systems. Finally, we consider how a common formalism to extract electron counts and energies can be used to establish an algebraic justification for the extensively used bond order-bond energy relationships. We also briefly review a path to recover one-electron functions from real space partitions. Although most of the applications considered will be restricted to real space atoms taken from the quantum theory of atoms in molecules, arguably the most successful of all the atomic partitions devised so far, all the take-home messages from this perspective are generalizable to any real space decompositions.

5.
Int J Mol Sci ; 24(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36614312

RESUMO

Catalytic systems based on sub-nanoclusters deposited over different supports are promising for very relevant chemical transformations such as many electrocatalytic processes as the ORR. These systems have been demonstrated to be very fluxional, as they are able to change shape and interconvert between each other either alone or in the presence of adsorbates. In addition, an accurate representation of their catalytic activity requires the consideration of ensemble effects and not a single structure alone. In this sense, a reliable theoretical methodology should assure an accurate and extensive exploration of the potential energy surface to include all the relevant structures and with correct relative energies. In this context, we applied DFT in conjunction with global optimization techniques to obtain and analyze the characteristics of the many local minima of Pt6 sub-nanoclusters over a carbon-based support (graphene)-a system with electrocatalytic relevance. We also analyzed the magnetism and the charge transfer between the clusters and the support and paid special attention to the dependence of dispersion effects on the ensemble characteristics. We found that the ensembles computed with and without dispersion corrections are qualitatively similar, especially for the lowest-in-energy clusters, which we attribute to a (mainly) covalent binding to the surface. However, there are some significant variations in the relative stability of some clusters, which would significantly affect their population in the ensemble composition.


Assuntos
Grafite , Carbono , Catálise
6.
Phys Chem Chem Phys ; 24(36): 21538-21548, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36069366

RESUMO

We provide a comprehensive overview of the chemical information from electron density: not only how to extract information, but also how to obtain and how to assess the quality of the electron density itself. After introducing several indexes derived from electron density, which allow bonding to be revealed, we focus on the various potential sources of electron density, and also explain the error trends they show so that a judicious choice of methods and limitations are clearly laid on the table. Computational, experimental-computational combinations, and machine learning efforts are covered in this work.


Assuntos
Elétrons , Aprendizado de Máquina
7.
J Chem Phys ; 156(16): 164103, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35489996

RESUMO

Real space chemical bonding descriptors, such as the electron localization function or the Laplacian of the electron density, have been widely used in electronic structure theory thanks to their power to provide chemically intuitive spatial images of bonded and non-bonded interactions. This capacity stems from their ability to display the shell structure of atoms and its distortion upon molecular formation. Here, we examine the spatial position of the N electrons of an atom at the maximum of the square of the wavefunction, the so-called Born maximum, as a shell structure descriptor for ground state atoms with Z = 1-36, comparing it to other available indices. The maximization is performed with the help of variational quantum Monte Carlo calculations. We show that many electron effects (mainly Pauli driven) are non-negligible, that Born shells are closer to the nucleus than any other of the examined descriptors, and that these shells are very well preserved in simple molecules.

8.
Inorg Chem ; 60(20): 15497-15508, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34558914

RESUMO

The catalysts [Ir(COD)(κ3-P,C,P'-PCNHCP)]BF4 and [Ir(COD)(κ2-P,C-PCNHCO)]BF4 proved to be active in the solventless dehydrogenation of formic acid. The impact of various cosolvents on the activity was evaluated, showing an outstanding improvement of the catalytic performance of [Ir(COD)(κ2-P,C-PCNHCO)]BF4] in "green" organic carbonates: namely, dimethyl carbonate (DMC) and propylene carbonate (PC). The TOF1h value for [Ir(COD)(κ2-P,C-PCNHCO)]BF4 increases from 61 to 988 h-1 upon changing from solventless conditions to a 1/1 (v/v) DMC/HCOOH mixture. However, in the case of [Ir(COD)(PCNHCP)]BF4, only a marginal improvement from 156 to 172 h-1 was observed under analogous conditions. Stoichiometric experiments allowed the identification of various key reaction intermediates, providing valuable information on their reactivity. Experimental data and DFT calculations point to the formation of dinuclear species as the catalyst deactivation pathway, which is prevented in the presence of DMC and PC.

9.
Phys Chem Chem Phys ; 23(5): 3531-3542, 2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33514973

RESUMO

A study of the solution-phase, solid-state structures of halogen-bonded co-crystals of 1,4-bis(iodoethynyl)benzene (p-BIB) with three salts, namely, decyltrimethylammonium bromide (DTMABr), tetrapropylammonium bromide (TPABr), and tetrabutylammonium bromide (TBABr), has been carried out, along with theoretical calculations. Isothermal titration calorimetry (ITC) showed that the binding constant of bromide with p-BIB in THF is not strongly dependent on the cation, and that the entropic term clearly dominates the enthalpic one in the free energy of binding. In the three crystal structures, the bromide anion acts as a doubly connected node for halogen bonding interactions, which results in linear or angular open chains. The intrachain angles (IBr-I) of the 1D supramolecular polymers based on p-BIB depend on the geometry and size of the cation and vary from 180° for DMTABr to 75° for TBABr. Non-covalent interaction (NCI) analysis of selected motifs and optimized crystals demonstrates that the balance between halogen bonds, hydrogen bonds, and van der Waals interactions, especially type-I halogenhalogen contacts, determines the crystal structures.

10.
Molecules ; 26(2)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33478091

RESUMO

The interacting quantum atoms approach (IQA) as applied to the electron-pair exhaustive partition of real space induced by the electron localization function (ELF) is used to examine candidate energetic descriptors to rationalize substituent effects in simple electrophilic aromatic substitutions. It is first shown that inductive and mesomeric effects can be recognized from the decay mode of the aromatic valence bond basin populations with the distance to the substituent, and that the fluctuation of the population of adjacent bonds holds also regioselectivity information. With this, the kinetic energy of the electrons in these aromatic basins, as well as their mutual exchange-correlation energies are proposed as suitable energetic indices containing relevant information about substituent effects. We suggest that these descriptors could be used to build future reactive force fields.


Assuntos
Elétrons , Teoria Quântica , Modelos Moleculares , Conformação Molecular , Estereoisomerismo , Termodinâmica
11.
J Am Chem Soc ; 142(42): 18093-18102, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-32894950

RESUMO

The synthesis of graphene nanoribbons (GNRs) that contain site-specifically substituted backbone heteroatoms is one of the essential goals that must be achieved in order to control the electronic properties of these next generation organic materials. We have exploited our recently reported solid-state topochemical polymerization/cyclization-aromatization strategy to convert the simple 1,4-bis(3-pyridyl)butadiynes 3a,b into the fjord-edge nitrogen-doped graphene nanoribbon structures 1a,b (fjord-edge N2[8]GNRs). Structural assignments are confirmed by CP/MAS 13C NMR, Raman, and XPS spectroscopy. The fjord-edge N2[8]GNRs 1a,b are promising precursors for the novel backbone nitrogen-substituted N2[8]AGNRs 2a,b. Geometry and band calculations on N2[8]AGNR 2c indicate that this class of nanoribbons should have unusual bonding topology and metallicity.


Assuntos
Grafite/química , Nanotubos de Carbono/química , Nitrogênio/química , Modelos Moleculares , Estrutura Molecular
12.
J Phys Chem A ; 124(10): 1959-1972, 2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32058718

RESUMO

In this article, we present a complementary analysis based on the reaction force F(ξ)/reaction force constant κ(ξ) and noncovalent interactions (NCI) index to characterize the energetics (kinetic and thermodynamics) and mechanistic pathways of two sets of multibond chemical reactions, namely, two double-proton transfer and two Diels-Alder cycloaddition reactions. This approach offers a very straightforward and useful way to delve into a deeper understanding of this type of process. While F(ξ) allows the partition of the whole pathway into three regions or phases, κ(ξ) describes how orchestrated are the bond-breaking and bond-formation events. In turn, NCI indicates how the inter- and intramolecular bonds evolve. The most innovative aspect is the inclusion of the formation of the reactant complex along the pathway, which, by means of NCI, unveils the early molecular recognition and the comprehension of its role in determining the degree of the synchronicity/nonsynchronicity of one-step processes. This approach should be a useful and alternative tool to characterize the energetics and the mechanism of general chemical reactions.

13.
Angew Chem Int Ed Engl ; 59(50): 22684-22689, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33015915

RESUMO

Lanthanide hexaborides (LnB6 ) have disparate and often anomalous properties, from structurally homogeneous mixed valency, to superconductivity, spectral anomalies, and unexplained phase transitions. It is unclear how such a diversity of properties may arise in the solids of identical crystal structures and seemingly very similar electronic structures. Building on our previous model for SmB6 (mixed valent, with a peak in specific heat, and pressure induced magnetic phase transitions), we present a unifying dynamic bonding model for LnB6 that explains simultaneously EuB6 (possessing an anomalous peak in specific heat at low T, magnetic phase transitions, and no mixed valency), YbB6 (mixed valent topological insulator), and rather ordinary LaB6 . We show that Ln can engage in covalent bonding with boron, and, in some members of the LnB6 family, also easily access alternative bonding states through the electron-phonon coupling. The accessibility, relative energetics, and bonding nature of the states involved dictate the properties.

14.
Angew Chem Int Ed Engl ; 59(27): 10996-11002, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32202032

RESUMO

Samarium hexaboride is an anomaly, having many exotic and seemingly mutually incompatible properties. It was proposed to be a mixed-valent semiconductor, and later a topological Kondo insulator, and yet has a Fermi surface despite being an insulator. We propose a new and unified understanding of SmB6 centered on the hitherto unrecognized dynamical bonding effect: the coexistence of two Sm-B bonding modes within SmB6 , corresponding to different oxidation states of the Sm. The mixed valency arises in SmB6 from thermal population of these distinct minima enabled by motion of B. Our model simultaneously explains the thermal valence fluctuations, appearance of magnetic Fermi surface, excess entropy at low temperatures, pressure-induced phase transitions, and related features in Raman spectra and their unexpected dependence on temperature and boron isotope.

15.
Chemistry ; 25(46): 10938-10945, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31206860

RESUMO

Valence-shell electron-pair repulsion (VSEPR) theory constitutes one of the pillars of theoretical predictive chemistry. It was proposed even before the advent of the concept of "spin", and it is still a very useful tool in chemistry. In this article we propose an extension of VSEPR theory to understand the core structure and predict core polarization in the main-group elements. We show from first principles (Electron Localization Function analysis) how the inner- and outer-core shells are organized. In particular, electrons in these regions are structured following the shape of the dual polyhedron of the valence shell (3rd period) or the equivalent polyhedron (4th and 5th periods). We interpret these results in terms of "hard" and "soft" core character. All the studied systems follow this trend, providing a framework for predicting electron distribution in the core. We also show that lone pairs behave as "standard ligands" in terms of core polarization. The predictive character of the model was tested by proposing the core polarization in different systems not included in the original set (such as XeF4 and [Fe(CN)6 ]3- ) and checking the hypothesis by means of a posteriori calculations. From the experimental point of view, the extension of VSEPR to the core region has consequences for current crystallography research. In particular, it explains the core polarization revealed by high resolution X-ray experiments.

16.
Phys Chem Chem Phys ; 21(8): 4215-4223, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30747171

RESUMO

A first step towards the construction of a quantum force field for electron pairs in direct space is taken. Making use of topological tools (Interacting Quantum Atoms and the Electron Localisation Function), we have analysed the dependency of electron pairs electrostatic, kinetic and exchange-correlation energies upon bond stretching. Simple correlations were found, and can be explained with elementary models such as the homogeneous electron gas. The resulting energy model is applicable to various bonding regimes: from homopolar to highly polarized and even to non-conventional bonds. Overall, this is a fresh approach for developing real space-based force fields including an exchange-correlation term. It provides the relative weight of each of the contributions, showing that, in common Lewis structures, the exchange correlation contribution between electron pairs is negligible. However, our results reveal that classical approximations progressively fail for delocalised electrons, including lone pairs. This theoretical framework justifies the success of the classic Bond Charge Model (BCM) approach in solid state systems and sets the basis of its limits. Finally, this approach opens the door towards the development of quantitative rigorous energy models based on the ELF topology.

17.
Chemphyschem ; 19(21): 2843-2847, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30137677

RESUMO

Reactions involving nitrogen fixation and transfer are of great industrial interest. In this regard, unveiling all the physical principles that determine their activity would be enormously beneficial for the rational design of novel catalysts with improved performance. Within this context, this work explores the activity of bulk molybdenum-based transition metal nitrides in ammonia synthesis. Our results highlight that the most active compositions show increasing ferromagnetism in the metal-nitrogen bonds, which constitute the active sites. We observe that the total spin accumulated in the bonds at the active sites is a physically meaningful descriptor to discriminate optimum catalysts. Higher activities are associated with ferromagnetic phases, and the underlying reason is an enhanced overlapping of the electronic wavefunctions; which also make the reaction steps spin-sensitive. These finding provides strong evidence of the general influence of electrons magnetic moment in catalysis, being part of the specific field of spintro-catalysis.

18.
Chemistry ; 21(49): 17701-7, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26490447

RESUMO

[{Rh(µ-Cl)(H)2 (IPr)}2 ] (IPr = 1,3-bis-(2,6-diisopropylphenyl)imidazole-2-ylidene) was found to be an efficient catalyst for the synthesis of novel propargylamines by a one-pot three-component reaction between primary arylamines, aliphatic aldehydes, and triisopropylsilylacetylene. This methodology offers an efficient synthetic pathway for the preparation of secondary propargylamines derived from aliphatic aldehydes. The reactivity of [{Rh(µ-Cl)(H)2 (IPr)}2 ] with amines and aldehydes was studied, leading to the identification of complexes [RhCl(CO)IPr(MesNH2 )] (MesNH2 = 2,4,6-trimethylaniline) and [RhCl(CO)2 IPr]. The latter shows a very low catalytic activity while the former brought about reaction rates similar to those obtained with [{Rh(µ-Cl)(H)2 (IPr)}2 ]. Besides, complex [RhCl(CO)IPr(MesNH2 )] reacts with an excess of amine and aldehyde to give [RhCl(CO)IPr{MesNCHCH2 CH(CH3 )2 }], which was postulated as the active species. A mechanism that clarifies the scarcely studied catalytic cycle of A3 -coupling reactions is proposed based on reactivity studies and DFT calculations.

19.
Chem Sci ; 15(15): 5564-5572, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38638238

RESUMO

Compounds containing Mn-O bonds are of utmost importance in biological systems and catalytic processes. Nevertheless, mononuclear manganese complexes containing all O-donor ligands are still rare. Taking advantage of the low tendency of the pentafluoroorthotellurate ligand (teflate, OTeF5) to bridge metal centers, we have synthesized two homoleptic manganese complexes with monomeric structures and an all O-donor coordination sphere. The tetrahedrally distorted MnII anion, [Mn(OTeF5)4]2-, can be described as a high spin d5 complex (S = 5/2), as found experimentally (magnetic susceptibility measurements and EPR spectroscopy) and using theoretical calculations (DFT and CASSCF/NEVPT2). The high spin d4 electronic configuration (S = 2) of the MnIII anion, [Mn(OTeF5)5]2-, was also determined experimentally and theoretically, and a square pyramidal geometry was found to be the most stable one for this complex. Finally, the bonding situation in both complexes was investigated by means of the Interacting Quantum Atoms (IQA) methodology and compared to that of hypothetical mononuclear fluoromanganates. Within each pair of [MnXn]2- (n = 4, 5) species (X = OTeF5, F), the Mn-X interaction is found to be comparable, therefore proving that the similar electronic properties of the teflate and the fluoride are also responsible for the stabilization of these unique species.

20.
Dalton Trans ; 52(14): 4585-4594, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-36928731

RESUMO

The novel P-N ligand 1-((diphenylphosphaneyl)methyl)-1H-benzo-1,2,3-triazole (1), based on a benzotriazole scaffold, has been prepared. The reaction of 1 with [CoCp*(CH3CN)3][BF4]2 and [CoCp*(I)2]2 (Cp* = pentamethylcyclopentadienyl) affords the chelate complexes [CoCp*(CH3CN)(P-N)][BF4]2 (2) and [CoCp*(I)(P-N)]I (3), respectively. Complexes 2 and 3 were studied as catalysts in the fluorination of aromatic and aliphatic acyl chlorides in CH2Cl2, with 3 showing notably higher activities than 2. Subsequently, organic carbonates (dimethyl carbonate and propylene carbonate) were also employed as solvents, which led to shorter reaction times and to the broadening of the substrate scope to a variety of aliphatic halides. Comparative studies between 3 and the analogous complex [CoCp*(I)2(PMePh2)], which features a monodentate phosphane ligand, showed that higher yields were obtained in the case of the former. DFT calculations and experimental studies were performed in order to shed light on the reaction mechanism, which entails the formation of a cobalt fluoride species that reacts via nucleophilic attack with the substrate to afford the corresponding fluorinated compounds.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa