Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Histochem Cell Biol ; 141(1): 75-84, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23912843

RESUMO

Pre- and postnatal corticosteroids are often used in perinatal medicine to improve pulmonary function in preterm infants. To mimic this clinical situation, newborn rats were treated systemically with dexamethasone (Dex), 0.1-0.01 mg/kg/day on days P1-P4. We hypothesized that postnatal Dex may have an impact on alveolarization by interfering with extracellular matrix proteins and cellular differentiation. Morphological alterations were observed on 3D images obtained by high-resolution synchrotron radiation X-ray tomographic microscopy. Alveolarization was quantified stereologically by estimating the formation of new septa between days P4 and P60. The parenchymal expression of tenascin-C (TNC), smooth muscle actin (SMA), and elastin was measured by immunofluorescence and gene expression for TNC by qRT-PCR. After Dex treatment, the first phase of alveolarization was significantly delayed between days P6 and P10, whereas the second phase was accelerated. Elastin and SMA expressions were delayed by Dex treatment, whereas TNC expression was delayed and prolonged. A short course of neonatal steroids impairs the first phase of alveolarization, most likely by altering the TNC and elastin expression. Due to an overshooting catch-up during the second phase of alveolarization, the differences disappear when the animals reach adulthood.


Assuntos
Dexametasona/farmacologia , Elastina/biossíntese , Organogênese/efeitos dos fármacos , Alvéolos Pulmonares/embriologia , Tenascina/biossíntese , Actinas/biossíntese , Animais , Animais Recém-Nascidos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Regulação para Baixo , Proteínas da Matriz Extracelular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Masculino , Modelos Animais , Ratos , Ratos Sprague-Dawley
2.
Proc Natl Acad Sci U S A ; 105(36): 13662-7, 2008 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-18757758

RESUMO

Tenascin-C (TNC) is a mechano-regulated, morphogenic, extracellular matrix protein that is associated with tissue remodeling. The physiological role of TNC remains unclear because transgenic mice engineered for a TNC deficiency, via a defect in TNC secretion, show no major pathologies. We hypothesized that TNC-deficient mice would demonstrate defects in the repair of damaged leg muscles, which would be of functional significance because this tissue is subjected to frequent cycles of mechanical damage and regeneration. TNC-deficient mice demonstrated a blunted expression of the large TNC isoform and a selective atrophy of fast-muscle fibers associated with a defective, fast myogenic expression response to a damaging mechanical challenge. Transcript profiling mapped a set of de-adhesion, angiogenesis, and wound healing regulators as TNC expression targets in striated muscle. Expression of these regulators correlated with the residual expression of a damage-related 200-kDa protein, which resembled the small TNC isoform. Somatic knockin of TNC in fast-muscle fibers confirmed the activation of a complex expression program of interstitial and slow myofiber repair by myofiber-derived TNC. The results presented here show that a TNC-orchestrated molecular pathway integrates muscle repair into the load-dependent control of the striated muscle phenotype.


Assuntos
Músculos/metabolismo , Tenascina/metabolismo , Animais , Atrofia/genética , Atrofia/metabolismo , Galinhas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genótipo , Camundongos , Peso Molecular , Contração Muscular , Fenótipo , Isoformas de Proteínas/metabolismo , Ratos , Transdução de Sinais , Estresse Mecânico , Tenascina/deficiência , Tenascina/genética , Transcrição Gênica/genética
3.
J Appl Physiol (1985) ; 128(5): 1287-1298, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32078464

RESUMO

After the airways have been formed by branching morphogenesis the gas exchange area of the developing lung is enlarged by the formation of new alveolar septa (alveolarization). The septa themselves mature by a reduction of their double-layered capillary networks to single-layered ones (microvascular maturation). Alveolarization in mice is subdivided into a first phase (postnatal days 4-21, classical alveolarization), where new septa are lifted off from immature preexisting septa, and a second phase (day 14 to adulthood, continued alveolarization), where new septa are formed from mature septa. Tenascin-C (TNC) is a multidomain extracellular matrix protein contributing to organogenesis and tumorigenesis. It is highly expressed during classical alveolarization, but afterward its expression is markedly reduced. To study the effect of TNC deficiency on postnatal lung development, the formation and maturation of the alveolar septa were followed stereologically. Furthermore, the number of proliferating (Ki-67-positive) and TUNEL-positive cells was estimated. In TNC-deficient mice for both phases of alveolarization a delay and catch-up were observed. Cell proliferation was increased at days 4 and 6; at day 7, thick septa with an accumulation of capillaries and cells were observed; and the number of TUNEL-positive cells (dying cells or DNA repair) was increased at day 10. Whereas at days 15 and 21 premature microvascular maturation was detected, the microvasculature was less mature at day 60 compared with wild type. No differences were observed in adulthood. We conclude that TNC contributes to the formation of new septa, to microvascular maturation, and to cell proliferation and migration during postnatal lung development.NEW & NOTEWORTHY Previously, we showed that the extracellular matrix protein tenascin-C takes part in prenatal lung development by controlling branching morphogenesis. Now we report that tenascin-C is also important during postnatal lung development, because tenascin-C deficiency delays the formation and maturation of the alveolar septa during not only classical but also continued alveolarization. Adult lungs are indistinguishable from wild type because of a catch-up formation of new septa.


Assuntos
Pulmão/crescimento & desenvolvimento , Alvéolos Pulmonares/crescimento & desenvolvimento , Tenascina/deficiência , Animais , Proteínas da Matriz Extracelular , Camundongos , Organogênese
4.
Dev Dyn ; 237(8): 2108-16, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18651668

RESUMO

Postnatal lung development is not well characterized in mice, especially the time point when alveolarization is completed. Using the total length and the length density of the free septal edge as measured for the formation of new septa, we followed alveolarization throughout postnatal lung development (days 2-125). Furthermore, the alveolar surface area was estimated. The formation of new septa was observed until day 36. Approximately 10% of the septa present in adult mice were formed prenatally by branching morphogenesis, approximately 50% were generated postnatally before and approximately 40% after maturation of the alveolar microvasculature. Approximately 5% of the alveolar surface area present during adulthood was present before alveolarization started, approximately 55% was formed during alveolarization (days 4-36) and approximately 40% afterward due to growth processes. We conclude that alveolarization continues until young adulthood and that the maturation of the alveolar microvasculature does not preclude further alveolarization.


Assuntos
Alvéolos Pulmonares/anatomia & histologia , Alvéolos Pulmonares/crescimento & desenvolvimento , Mucosa Respiratória/anatomia & histologia , Mucosa Respiratória/crescimento & desenvolvimento , Fatores Etários , Animais , Imageamento Tridimensional , Camundongos , Camundongos Endogâmicos , Microscopia , Alvéolos Pulmonares/diagnóstico por imagem , Mucosa Respiratória/diagnóstico por imagem , Síncrotrons , Tomografia por Raios X
5.
Am J Physiol Lung Cell Mol Physiol ; 294(2): L246-54, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18032698

RESUMO

According to the current view, the formation of new alveolar septa from preexisting ones ceases due to the reduction of a double- to a single-layered capillaries network inside the alveolar septa (microvasculature maturation postnatal days 14-21 in rats). We challenged this view by measuring stereologically the appearance of new alveolar septa and by studying the alveolar capillary network in three-dimensional (3-D) visualizations obtained by high-resolution synchrotron radiation X-ray tomographic microscopy. We observed that new septa are formed at least until young adulthood (rats, days 4-60) and that roughly half of the new septa are lifted off of mature septa containing single-layered capillary networks. At the basis of newly forming septa, we detected a local duplication of the capillary network. We conclude that new alveoli may be formed in principle at any time and at any location inside the lung parenchyma and that lung development continues into young adulthood. We define two phases during developmental alveolarization. Phase one (days 4-21), lifting off of new septa from immature preexisting septa, and phase two (day 14 through young adulthood), formation of septa from mature preexisting septa. Clinically, our results ask for precautions using drugs influencing structural lung development during both phases of alveolarization.


Assuntos
Alvéolos Pulmonares/crescimento & desenvolvimento , Alvéolos Pulmonares/ultraestrutura , Animais , Capilares/citologia , Imageamento Tridimensional , Modelos Biológicos , Alvéolos Pulmonares/citologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa