Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 47(D1): D1186-D1194, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30407590

RESUMO

The Evidence and Conclusion Ontology (ECO) contains terms (classes) that describe types of evidence and assertion methods. ECO terms are used in the process of biocuration to capture the evidence that supports biological assertions (e.g. gene product X has function Y as supported by evidence Z). Capture of this information allows tracking of annotation provenance, establishment of quality control measures and query of evidence. ECO contains over 1500 terms and is in use by many leading biological resources including the Gene Ontology, UniProt and several model organism databases. ECO is continually being expanded and revised based on the needs of the biocuration community. The ontology is freely available for download from GitHub (https://github.com/evidenceontology/) or the project's website (http://evidenceontology.org/). Users can request new terms or changes to existing terms through the project's GitHub site. ECO is released into the public domain under CC0 1.0 Universal.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Ontologia Genética , Proteínas/genética , Animais , Humanos , Armazenamento e Recuperação da Informação/métodos , Internet , Proteínas/metabolismo , Análise de Sequência de Proteína , Interface Usuário-Computador
2.
Nucleic Acids Res ; 46(D1): D1168-D1180, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29186578

RESUMO

The Planteome project (http://www.planteome.org) provides a suite of reference and species-specific ontologies for plants and annotations to genes and phenotypes. Ontologies serve as common standards for semantic integration of a large and growing corpus of plant genomics, phenomics and genetics data. The reference ontologies include the Plant Ontology, Plant Trait Ontology and the Plant Experimental Conditions Ontology developed by the Planteome project, along with the Gene Ontology, Chemical Entities of Biological Interest, Phenotype and Attribute Ontology, and others. The project also provides access to species-specific Crop Ontologies developed by various plant breeding and research communities from around the world. We provide integrated data on plant traits, phenotypes, and gene function and expression from 95 plant taxa, annotated with reference ontology terms. The Planteome project is developing a plant gene annotation platform; Planteome Noctua, to facilitate community engagement. All the Planteome ontologies are publicly available and are maintained at the Planteome GitHub site (https://github.com/Planteome) for sharing, tracking revisions and new requests. The annotated data are freely accessible from the ontology browser (http://browser.planteome.org/amigo) and our data repository.


Assuntos
Bases de Dados Genéticas , Genoma de Planta , Plantas/genética , Produtos Agrícolas/genética , Curadoria de Dados , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Anotação de Sequência Molecular , Fenótipo , Software , Interface Usuário-Computador
3.
Nucleic Acids Res ; 45(D1): D347-D352, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-27733503

RESUMO

Linked Data (LD) aims to achieve interconnected data by representing entities using Unified Resource Identifiers (URIs), and sharing information using Resource Description Frameworks (RDFs) and HTTP. Ontologies, which logically represent entities and relations in specific domains, are the basis of LD. Ontobee (http://www.ontobee.org/) is a linked ontology data server that stores ontology information using RDF triple store technology and supports query, visualization and linkage of ontology terms. Ontobee is also the default linked data server for publishing and browsing biomedical ontologies in the Open Biological Ontology (OBO) Foundry (http://obofoundry.org) library. Ontobee currently hosts more than 180 ontologies (including 131 OBO Foundry Library ontologies) with over four million terms. Ontobee provides a user-friendly web interface for querying and visualizing the details and hierarchy of a specific ontology term. Using the eXtensible Stylesheet Language Transformation (XSLT) technology, Ontobee is able to dereference a single ontology term URI, and then output RDF/eXtensible Markup Language (XML) for computer processing or display the HTML information on a web browser for human users. Statistics and detailed information are generated and displayed for each ontology listed in Ontobee. In addition, a SPARQL web interface is provided for custom advanced SPARQL queries of one or multiple ontologies.


Assuntos
Ontologias Biológicas , Bases de Dados Factuais , Software , Navegador
4.
Nucleic Acids Res ; 45(D1): D737-D743, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-27794045

RESUMO

Upon the first publication of the fifth iteration of the Functional Annotation of Mammalian Genomes collaborative project, FANTOM5, we gathered a series of primary data and database systems into the FANTOM web resource (http://fantom.gsc.riken.jp) to facilitate researchers to explore transcriptional regulation and cellular states. In the course of the collaboration, primary data and analysis results have been expanded, and functionalities of the database systems enhanced. We believe that our data and web systems are invaluable resources, and we think the scientific community will benefit for this recent update to deepen their understanding of mammalian cellular organization. We introduce the contents of FANTOM5 here, report recent updates in the web resource and provide future perspectives.


Assuntos
Bases de Dados Genéticas , Perfilação da Expressão Gênica/métodos , Genômica/métodos , Mamíferos/genética , Software , Navegador , Animais , Biologia Computacional , Humanos , Ferramenta de Busca
5.
Hum Mutat ; 36(10): 922-7, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26255989

RESUMO

Despite the increasing prevalence of clinical sequencing, the difficulty of identifying additional affected families is a key obstacle to solving many rare diseases. There may only be a handful of similar patients worldwide, and their data may be stored in diverse clinical and research databases. Computational methods are necessary to enable finding similar patients across the growing number of patient repositories and registries. We present the Matchmaker Exchange Application Programming Interface (MME API), a protocol and data format for exchanging phenotype and genotype profiles to enable matchmaking among patient databases, facilitate the identification of additional cohorts, and increase the rate with which rare diseases can be researched and diagnosed. We designed the API to be straightforward and flexible in order to simplify its adoption on a large number of data types and workflows. We also provide a public test data set, curated from the literature, to facilitate implementation of the API and development of new matching algorithms. The initial version of the API has been successfully implemented by three members of the Matchmaker Exchange and was immediately able to reproduce previously identified matches and generate several new leads currently being validated. The API is available at https://github.com/ga4gh/mme-apis.


Assuntos
Biologia Computacional/métodos , Disseminação de Informação/métodos , Doenças Raras/genética , Algoritmos , Bases de Dados Genéticas , Predisposição Genética para Doença , Genótipo , Humanos , Fenótipo , Doenças Raras/patologia , Navegador
6.
bioRxiv ; 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38076838

RESUMO

The lack of interoperable data standards among reference genome data-sharing platforms inhibits cross-platform analysis while increasing the risk of data provenance loss. Here, we describe the FAIR-bioHeaders Reference genome (FHR), a metadata standard guided by the principles of Findability, Accessibility, Interoperability, and Reuse (FAIR) in addition to the principles of Transparency, Responsibility, User focus, Sustainability, and Technology (TRUST). The objective of FHR is to provide an extensive set of data serialisation methods and minimum data field requirements while still maintaining extensibility, flexibility, and expressivity in an increasingly decentralised genomic data ecosystem. The effort needed to implement FHR is low; FHR's design philosophy ensures easy implementation while retaining the benefits gained from recording both machine and human-readable provenance.

7.
Hum Mol Genet ; 19(4): 707-19, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19933168

RESUMO

We describe a novel approach to genetic association analyses with proteins sub-divided into biologically relevant smaller sequence features (SFs), and their variant types (VTs). SFVT analyses are particularly informative for study of highly polymorphic proteins such as the human leukocyte antigen (HLA), given the nature of its genetic variation: the high level of polymorphism, the pattern of amino acid variability, and that most HLA variation occurs at functionally important sites, as well as its known role in organ transplant rejection, autoimmune disease development and response to infection. Further, combinations of variable amino acid sites shared by several HLA alleles (shared epitopes) are most likely better descriptors of the actual causative genetic variants. In a cohort of systemic sclerosis patients/controls, SFVT analysis shows that a combination of SFs implicating specific amino acid residues in peptide binding pockets 4 and 7 of HLA-DRB1 explains much of the molecular determinant of risk.


Assuntos
Variação Genética , Antígenos HLA/genética , Escleroderma Sistêmico/genética , Antígenos HLA/química , Antígenos HLA-DR/química , Antígenos HLA-DR/genética , Cadeias HLA-DRB1 , Humanos , Conformação Molecular
8.
BMC Bioinformatics ; 12: 418, 2011 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-22032770

RESUMO

BACKGROUND: Ontologies are widely used to represent knowledge in biomedicine. Systematic approaches for detecting errors and disagreements are needed for large ontologies with hundreds or thousands of terms and semantic relationships. A recent approach of defining terms using logical definitions is now increasingly being adopted as a method for quality control as well as for facilitating interoperability and data integration. RESULTS: We show how automated reasoning over logical definitions of ontology terms can be used to improve ontology structure. We provide the Java software package GULO (Getting an Understanding of LOgical definitions), which allows fast and easy evaluation for any kind of logically decomposed ontology by generating a composite OWL ontology from appropriate subsets of the referenced ontologies and comparing the inferred relationships with the relationships asserted in the target ontology. As a case study we show how to use GULO to evaluate the logical definitions that have been developed for the Mammalian Phenotype Ontology (MPO). CONCLUSIONS: Logical definitions of terms from biomedical ontologies represent an important resource for error and disagreement detection. GULO gives ontology curators a fast and simple tool for validation of their work.


Assuntos
Semântica , Software , Vocabulário Controlado , Animais , Humanos , Conhecimento , Lógica , Fenótipo
9.
Proc Natl Acad Sci U S A ; 105(28): 9715-20, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18621688

RESUMO

We demonstrate the feasibility of generating thousands of transgenic Drosophila melanogaster lines in which the expression of an exogenous gene is reproducibly directed to distinct small subsets of cells in the adult brain. We expect the expression patterns produced by the collection of 5,000 lines that we are currently generating to encompass all neurons in the brain in a variety of intersecting patterns. Overlapping 3-kb DNA fragments from the flanking noncoding and intronic regions of genes thought to have patterned expression in the adult brain were inserted into a defined genomic location by site-specific recombination. These fragments were then assayed for their ability to function as transcriptional enhancers in conjunction with a synthetic core promoter designed to work with a wide variety of enhancer types. An analysis of 44 fragments from four genes found that >80% drive expression patterns in the brain; the observed patterns were, on average, comprised of <100 cells. Our results suggest that the D. melanogaster genome contains >50,000 enhancers and that multiple enhancers drive distinct subsets of expression of a gene in each tissue and developmental stage. We expect that these lines will be valuable tools for neuroanatomy as well as for the elucidation of neuronal circuits and information flow in the fly brain.


Assuntos
Drosophila melanogaster , Neurônios/metabolismo , Neurociências/métodos , Recombinação Genética/genética , Animais , Animais Geneticamente Modificados , Pesquisa Biomédica/métodos , Encéfalo/citologia , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes de Insetos
10.
mSystems ; 6(1)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33622857

RESUMO

Microbiome samples are inherently defined by the environment in which they are found. Therefore, data that provide context and enable interpretation of measurements produced from biological samples, often referred to as metadata, are critical. Important contributions have been made in the development of community-driven metadata standards; however, these standards have not been uniformly embraced by the microbiome research community. To understand how these standards are being adopted, or the barriers to adoption, across research domains, institutions, and funding agencies, the National Microbiome Data Collaborative (NMDC) hosted a workshop in October 2019. This report provides a summary of discussions that took place throughout the workshop, as well as outcomes of the working groups initiated at the workshop.

11.
BMC Bioinformatics ; 11 Suppl 12: S8, 2010 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-21210987

RESUMO

BACKGROUND: The biosciences increasingly face the challenge of integrating a wide variety of available data, information and knowledge in order to gain an understanding of biological systems. Data integration is supported by a diverse series of tools, but the lack of a consistent terminology to label these data still presents significant hurdles. As a consequence, much of the available biological data remains disconnected or worse: becomes misconnected. The need to address this terminology problem has spawned the building of a large number of bio-ontologies. OBOF, RDF and OWL are among the most used ontology formats to capture terms and relationships in the Life Sciences, opening the potential to use the Semantic Web to support data integration and further exploitation of integrated resources via automated retrieval and reasoning procedures. METHODS: We extended the Perl suite ONTO-PERL and functionally integrated it into the Galaxy platform. The resulting ONTO-ToolKit supports the analysis and handling of OBO-formatted ontologies via the Galaxy interface, and we demonstrated its functionality in different use cases that illustrate the flexibility to obtain sets of ontology terms that match specific search criteria. RESULTS: ONTO-ToolKit is available as a tool suite for Galaxy. Galaxy not only provides a user friendly interface allowing the interested biologist to manipulate OBO ontologies, it also opens up the possibility to perform further biological (and ontological) analyses by using other tools available within the Galaxy environment. Moreover, it provides tools to translate OBO-formatted ontologies into Semantic Web formats such as RDF and OWL. CONCLUSIONS: ONTO-ToolKit reaches out to researchers in the biosciences, by providing a user-friendly way to analyse and manipulate ontologies. This type of functionality will become increasingly important given the wealth of information that is becoming available based on ontologies.


Assuntos
Software , Vocabulário Controlado , Disciplinas das Ciências Biológicas , Expressão Gênica , Internet , Proteínas/classificação , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Semântica
12.
BMC Bioinformatics ; 10: 70, 2009 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-19243617

RESUMO

BACKGROUND: Recent increases in the volume and diversity of life science data and information and an increasing emphasis on data sharing and interoperability have resulted in the creation of a large number of biological ontologies, including the Cell Ontology (CL), designed to provide a standardized representation of cell types for data annotation. Ontologies have been shown to have significant benefits for computational analyses of large data sets and for automated reasoning applications, leading to organized attempts to improve the structure and formal rigor of ontologies to better support computation. Currently, the CL employs multiple is_a relations, defining cell types in terms of histological, functional, and lineage properties, and the majority of definitions are written with sufficient generality to hold across multiple species. This approach limits the CL's utility for computation and for cross-species data integration. RESULTS: To enhance the CL's utility for computational analyses, we developed a method for the ontological representation of cells and applied this method to develop a dendritic cell ontology (DC-CL). DC-CL subtypes are delineated on the basis of surface protein expression, systematically including both species-general and species-specific types and optimizing DC-CL for the analysis of flow cytometry data. We avoid multiple uses of is_a by linking DC-CL terms to terms in other ontologies via additional, formally defined relations such as has_function. CONCLUSION: This approach brings benefits in the form of increased accuracy, support for reasoning, and interoperability with other ontology resources. Accordingly, we propose our method as a general strategy for the ontological representation of cells. DC-CL is available from http://www.obofoundry.org.


Assuntos
Biologia Computacional/métodos , Células Dendríticas/classificação , Bases de Dados Factuais , Armazenamento e Recuperação da Informação/métodos , Terminologia como Assunto , Vocabulário Controlado
13.
BMC Bioinformatics ; 10: 125, 2009 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-19397794

RESUMO

BACKGROUND: A wide variety of ontologies relevant to the biological and medical domains are available through the OBO Foundry portal, and their number is growing rapidly. Integration of these ontologies, while requiring considerable effort, is extremely desirable. However, heterogeneities in format and style pose serious obstacles to such integration. In particular, inconsistencies in naming conventions can impair the readability and navigability of ontology class hierarchies, and hinder their alignment and integration. While other sources of diversity are tremendously complex and challenging, agreeing a set of common naming conventions is an achievable goal, particularly if those conventions are based on lessons drawn from pooled practical experience and surveys of community opinion. RESULTS: We summarize a review of existing naming conventions and highlight certain disadvantages with respect to general applicability in the biological domain. We also present the results of a survey carried out to establish which naming conventions are currently employed by OBO Foundry ontologies and to determine what their special requirements regarding the naming of entities might be. Lastly, we propose an initial set of typographic, syntactic and semantic conventions for labelling classes in OBO Foundry ontologies. CONCLUSION: Adherence to common naming conventions is more than just a matter of aesthetics. Such conventions provide guidance to ontology creators, help developers avoid flaws and inaccuracies when editing, and especially when interlinking, ontologies. Common naming conventions will also assist consumers of ontologies to more readily understand what meanings were intended by the authors of ontologies used in annotating bodies of data.


Assuntos
Biologia Computacional/métodos , Armazenamento e Recuperação da Informação/métodos , Vocabulário Controlado , Sistemas de Gerenciamento de Base de Dados , Terminologia como Assunto
14.
Mamm Genome ; 20(8): 457-61, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19649761

RESUMO

Now that the laboratory mouse genome is sequenced and the annotation of its gene content is improving, the next major challenge is the annotation of the phenotypic associations of mouse genes. This requires the development of systematic phenotyping pipelines that use standardized phenotyping procedures which allow comparison across laboratories. It also requires the development of a sophisticated informatics infrastructure for the description and interchange of phenotype data. Here we focus on the current state of the art in the description of data produced by systematic phenotyping approaches using ontologies, in particular, the EQ (Entity-Quality) approach, and what developments are required to facilitate the linking of phenotypic descriptions of mutant mice to human diseases.


Assuntos
Modelos Animais de Doenças , Doença/genética , Camundongos/genética , Animais , Genoma , Humanos , Camundongos Transgênicos , Fenótipo
15.
PLoS Comput Biol ; 4(11): e1000218, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18989397

RESUMO

The millions of mutations and polymorphisms that occur in human populations are potential predictors of disease, of our reactions to drugs, of predisposition to microbial infections, and of age-related conditions such as impaired brain and cardiovascular functions. However, predicting the phenotypic consequences and eventual clinical significance of a sequence variant is not an easy task. Computational approaches have found perturbation of conserved amino acids to be a useful criterion for identifying variants likely to have phenotypic consequences. To our knowledge, however, no study to date has explored the potential of variants that occur at homologous positions within paralogous human proteins as a means of identifying polymorphisms with likely phenotypic consequences. In order to investigate the potential of this approach, we have assembled a unique collection of known disease-causing variants from OMIM and the Human Genome Mutation Database (HGMD) and used them to identify and characterize pairs of sequence variants that occur at homologous positions within paralogous human proteins. Our analyses demonstrate that the locations of variants are correlated in paralogous proteins. Moreover, if one member of a variant-pair is disease-causing, its partner is likely to be disease-causing as well. Thus, information about variant-pairs can be used to identify potentially disease-causing variants, extend existing procedures for polymorphism prioritization, and provide a suite of candidates for further diagnostic and therapeutic purposes.


Assuntos
Alelos , Mapeamento Cromossômico/métodos , Biologia Computacional/métodos , Doença/genética , Especiação Genética , Sequência de Aminoácidos/genética , Técnicas de Laboratório Clínico , Bases de Dados Genéticas , Evolução Molecular , Frequência do Gene , Marcadores Genéticos , Genoma Humano , Humanos , Desequilíbrio de Ligação , Fenótipo , Polimorfismo de Nucleotídeo Único , Proteínas/genética , Alinhamento de Sequência
16.
J Biomed Semantics ; 9(1): 6, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29347969

RESUMO

BACKGROUND: Creation and use of ontologies has become a mainstream activity in many disciplines, in particular, the biomedical domain. Ontology developers often disseminate information about these ontologies in peer-reviewed ontology description reports. There appears to be, however, a high degree of variability in the content of these reports. Often, important details are omitted such that it is difficult to gain a sufficient understanding of the ontology, its content and method of creation. RESULTS: We propose the Minimum Information for Reporting an Ontology (MIRO) guidelines as a means to facilitate a higher degree of completeness and consistency between ontology documentation, including published papers, and ultimately a higher standard of report quality. A draft of the MIRO guidelines was circulated for public comment in the form of a questionnaire, and we subsequently collected 110 responses from ontology authors, developers, users and reviewers. We report on the feedback of this consultation, including comments on each guideline, and present our analysis on the relative importance of each MIRO information item. These results were used to update the MIRO guidelines, mainly by providing more detailed operational definitions of the individual items and assigning degrees of importance. Based on our revised version of MIRO, we conducted a review of 15 recently published ontology description reports from three important journals in the Semantic Web and Biomedical domain and analysed them for compliance with the MIRO guidelines. We found that only 41.38% of the information items were covered by the majority of the papers (and deemed important by the survey respondents) and a large number of important items are not covered at all, like those related to testing and versioning policies. CONCLUSIONS: We believe that the community-reviewed MIRO guidelines can contribute to improving significantly the quality of ontology description reports and other documentation, in particular by increasing consistent reporting of important ontology features that are otherwise often neglected.


Assuntos
Ontologias Biológicas , Guias como Assunto , Projetos de Pesquisa , Inquéritos e Questionários
17.
PLoS Comput Biol ; 2(3): e15, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16518452

RESUMO

We have used the annotations of six animal genomes (Homo sapiens, Mus musculus, Ciona intestinalis, Drosophila melanogaster, Anopheles gambiae, and Caenorhabditis elegans) together with the sequences of five unannotated Drosophila genomes to survey changes in protein sequence and gene structure over a variety of timescales--from the less than 5 million years since the divergence of D. simulans and D. melanogaster to the more than 500 million years that have elapsed since the Cambrian explosion. To do so, we have developed a new open-source software library called CGL (for "Comparative Genomics Library"). Our results demonstrate that change in intron-exon structure is gradual, clock-like, and largely independent of coding-sequence evolution. This means that genome annotations can be used in new ways to inform, corroborate, and test conclusions drawn from comparative genomics analyses that are based upon protein and nucleotide sequence similarities.


Assuntos
Biologia Computacional/métodos , Evolução Molecular , Genoma , Animais , Anopheles/genética , Caenorhabditis elegans/genética , Ciona intestinalis/genética , Drosophila melanogaster/genética , Humanos , Camundongos , Filogenia , Proteômica/métodos , Especificidade da Espécie
18.
OMICS ; 10(2): 185-98, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16901225

RESUMO

The National Center for Biomedical Ontology is a consortium that comprises leading informaticians, biologists, clinicians, and ontologists, funded by the National Institutes of Health (NIH) Roadmap, to develop innovative technology and methods that allow scientists to record, manage, and disseminate biomedical information and knowledge in machine-processable form. The goals of the Center are (1) to help unify the divergent and isolated efforts in ontology development by promoting high quality open-source, standards-based tools to create, manage, and use ontologies, (2) to create new software tools so that scientists can use ontologies to annotate and analyze biomedical data, (3) to provide a national resource for the ongoing evaluation, integration, and evolution of biomedical ontologies and associated tools and theories in the context of driving biomedical projects (DBPs), and (4) to disseminate the tools and resources of the Center and to identify, evaluate, and communicate best practices of ontology development to the biomedical community. Through the research activities within the Center, collaborations with the DBPs, and interactions with the biomedical community, our goal is to help scientists to work more effectively in the e-science paradigm, enhancing experiment design, experiment execution, data analysis, information synthesis, hypothesis generation and testing, and understand human disease.


Assuntos
Pesquisa Biomédica/normas , National Institutes of Health (U.S.) , Software , Internet , Semântica , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa