Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Oecologia ; 197(1): 1-11, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33885981

RESUMO

Leaf traits are closely linked to plant responses to the environment and can provide important information on adaptation and evolution. These traits may also result from common ancestry, so phylogenetic relationships also play an important role in adaptive evolution. We evaluated the effects of the closed forest environment (gallery forest) and the open savanna environment (cerrado) on the selection of leaf traits of graminoid species. The two plant communities differ in light, nutrients, and water availability, which are important drivers in the selection and differentiation of these traits. We also investigated the functional structure and the role of phylogeny in the functional organization of species, considering leaf traits. Patterns of leaf trait variation differed between forest and savanna species suggesting habitat specialization. Wider and longer leaves, with higher values of specific leaf area, chlorophyll, and nitrogen, seem to be an advantage for graminoid species growing in forest environments, while thicker leaves, with higher values of leaf dry-matter content and carbon, benefit species growing in savanna environments. We found few phylogenetic signals related to leaf traits in each environment. Therefore, the functional similarity that the gallery forest and cerrado graminoid species share within their group is independent of their phylogenetic proximity. Environmental filters affect the functional structure of communities differently, generating communities with trait values that are more distant than expected by chance in cerrado (functional dispersion), and closer than expected by chance in the gallery forest (functional convergence).


Assuntos
Florestas , Pradaria , Brasil , Filogenia , Folhas de Planta
2.
Am J Bot ; 103(11): 2000-2012, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27879262

RESUMO

PREMISE OF THE STUDY: By convention, scientific naming of angiosperm species began in 1753; it is estimated that 10-20% of species remain undescribed. To complete this task before rare, undescribed species go extinct, a better understanding of the description process is needed. The South American Cerrado biodiversity hotspot was considered a suitable model due to a high diversity of plants, habitats, and social history of species description. METHODS: A randomized sample of 214 species (2% of the angiosperm flora) and 22 variables were analyzed using multivariate analyses and analysis of variance. KEY RESULTS: Plants with wide global distributions, recorded from many areas, and above 2.6 m were described significantly earlier than narrowly distributed, uncommon species of smaller stature. The beginning of the career of the botanist who first collected the species was highly significant, with an average delay between first collection and description of 29 yr, and between type collection and description 19 yr; standard deviations were high and rose over time. Over a third of first collections were not cited in descriptions. Trends such as scientific specialization and decline of undescribed species were highlighted. Descriptions that involved potential collaboration between collectors and authors were significantly slower than those that did not. CONCLUSIONS: Results support four recommendations to hasten discovery of new species: (1) preferential collecting of plants below 2.6 m, at least in the Cerrado; (2) access to undetermined material in herbaria; (3) fieldwork in areas where narrow-endemic species occur; (4) fieldwork by knowledgeable botanists followed by descriptive activity by the same.


Assuntos
Botânica , Conservação dos Recursos Naturais , Magnoliopsida/classificação , Terminologia como Assunto , Biodiversidade , Ecossistema
3.
PLoS One ; 19(6): e0305098, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38857284

RESUMO

Several herbaceous species exhibit mass flowering after fires in Neotropical savannas. However, unequivocal evidence of fire dependency and the consequences for plant reproduction are lacking. In nutrient-poor fire-prone savannas, the damage caused by fire and by other means (e.g., leaf removal, but not necessarily having a negative impact) constrains the maintenance and expansion of plant population by affecting the ability of individuals to recover. Therefore, the compensatory responses of plants to both damages should be convergent in such environments. Using Bulbostylis paradoxa-reported to be fire-dependent to flower-as a model, we investigated the role of fire and leaf removal in anticipating the flowering and reproduction periods, and its possible consequences on seedling establishment. We monitored 70 burned individuals, 70 damaged/clipped, and 35 without damage to estimate time for flowering, seed quality and germination parameters. To expand our sampling coverage, we examined high-resolution images from herbarium collections in the SpeciesLink database. For each herbarium image, we recorded the presence or absence of a fire scar, the month of flowering, and the number of flowering stalks. Bulbostylis paradoxa was fire-stimulated but not dependent on fire to flower, with 65.7% of the individuals flowering in the burned area, 48.6% in the clipped, and 11.4% in the control. This was consistent with the analysis of the herbarium images in which 85.7% of the specimens with flowers had fire scars and 14.3% did not. Burned individuals synchronized flowering and produced more viable seeds. However, the seeds might face a period of unsuitable ecological conditions after early to mid-dry season fires. Flowering of unburned plants was synchronized with the onset of the rainy season. Flexibility in flowering and vegetative reproduction by fragmentation confer to this species, and most likely other plants from the herbaceous layer, the capability of site occupation and population persistence in burned and unburned savanna sites.


Assuntos
Incêndios , Flores , Pradaria , Folhas de Planta , Flores/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Reprodução/fisiologia , Germinação/fisiologia , Plântula/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Clima Tropical
4.
Sci Rep ; 12(1): 1588, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35091635

RESUMO

Native vegetation across the Brazilian Cerrado is highly heterogeneous and biodiverse and provides important ecosystem services, including carbon and water balance regulation, however, land-use changes have been extensive. Conservation and restoration of native vegetation is essential and could be facilitated by detailed landcover maps. Here, across a large case study region in Goiás State, Brazil (1.1 Mha), we produced physiognomy level maps of native vegetation (n = 8) and other landcover types (n = 5). Seven different classification schemes using different combinations of input satellite imagery were used, with a Random Forest classifier and 2-stage approach implemented within Google Earth Engine. Overall classification accuracies ranged from 88.6-92.6% for native and non-native vegetation at the formation level (stage-1), and 70.7-77.9% for native vegetation at the physiognomy level (stage-2), across the seven different classifications schemes. The differences in classification accuracy resulting from varying the input imagery combination and quality control procedures used were small. However, a combination of seasonal Sentinel-1 (C-band synthetic aperture radar) and Sentinel-2 (surface reflectance) imagery resulted in the most accurate classification at a spatial resolution of 20 m. Classification accuracies when using Landsat-8 imagery were marginally lower, but still reasonable. Quality control procedures that account for vegetation burning when selecting vegetation reference data may also improve classification accuracy for some native vegetation types. Detailed landcover maps, produced using freely available satellite imagery and upscalable techniques, will be important tools for understanding vegetation functioning at the landscape scale and for implementing restoration projects.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa