Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
PLoS Genet ; 18(2): e1010088, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35192609

RESUMO

The mammalian nuclear hormone receptors LRH1 (NR5A2) and SF1 (NR5A1) are close paralogs that can bind the same DNA motif and play crucial roles in gonadal development and function. Lrh1 is essential for follicle development in the ovary and has been proposed to regulate steroidogenesis in the testis. Lrh1 expression in the testis is highly elevated by loss of the sex regulator Dmrt1, which triggers male-to-female transdifferentiation of Sertoli cells. While Sf1 has a well-defined and crucial role in testis development, no function for Lrh1 in the male gonad has been reported. Here we use conditional genetics to examine Lrh1 requirements both in gonadal cell fate reprogramming and in normal development of the three major cell lineages of the mouse testis. We find that loss of Lrh1 suppresses sexual transdifferentiation, confirming that Lrh1 can act as a key driver in reprogramming sexual cell fate. In otherwise wild-type testes, we find that Lrh1 is dispensable in Leydig cells but is required in Sertoli cells for their proliferation, for seminiferous tubule morphogenesis, for maintenance of the blood-testis barrier, for feedback regulation of androgen production, and for support of spermatogenesis. Expression profiling identified misexpressed genes likely underlying most aspects of the Sertoli cell phenotype. In the germ line we found that Lrh1 is required for maintenance of functional spermatogonia, and hence mutants progressively lose spermatogenesis. Reduced expression of the RNA binding factor Nxf2 likely contributes to the SSC defect. Unexpectedly, however, over time the Lrh1 mutant germ line recovered abundant spermatogenesis and fertility. This finding indicates that severe germ line depletion triggers a response allowing mutant spermatogonia to recover the ability to undergo complete spermatogenesis. Our results demonstrate that Lrh1, like Sf1, is an essential regulator of testis development and function but has a very distinct repertoire of functions.


Assuntos
Células de Sertoli , Testículo , Animais , Feminino , Masculino , Mamíferos , Camundongos , Diferenciação Sexual , Espermatogênese/genética , Espermatogônias , Testículo/metabolismo
2.
Nucleic Acids Res ; 49(11): 6144-6164, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34096593

RESUMO

Mammalian sexual development commences when fetal bipotential progenitor cells adopt male Sertoli (in XY) or female granulosa (in XX) gonadal cell fates. Differentiation of these cells involves extensive divergence in chromatin state and gene expression, reflecting distinct roles in sexual differentiation and gametogenesis. Surprisingly, differentiated gonadal cell fates require active maintenance through postnatal life to prevent sexual transdifferentiation and female cell fate can be reprogrammed by ectopic expression of the sex regulator DMRT1. Here we examine how DMRT1 reprograms granulosa cells to Sertoli-like cells in vivo and in culture. We define postnatal sex-biased gene expression programs and identify three-dimensional chromatin contacts and differentially accessible chromatin regions (DARs) associated with differentially expressed genes. Using a conditional transgene we find DMRT1 only partially reprograms the ovarian transcriptome in the absence of SOX9 and its paralog SOX8, indicating that these factors functionally cooperate with DMRT1. ATAC-seq and ChIP-seq show that DMRT1 induces formation of many DARs that it binds with SOX9, and DMRT1 is required for binding of SOX9 at most of these. We suggest that DMRT1 can act as a pioneer factor to open chromatin and allow binding of SOX9, which then cooperates with DMRT1 to reprogram sexual cell fate.


Assuntos
Reprogramação Celular/genética , Células da Granulosa/metabolismo , Fatores de Transcrição SOX9/metabolismo , Células de Sertoli/metabolismo , Fatores de Transcrição/metabolismo , Animais , Células Cultivadas , Cromatina/metabolismo , DNA/metabolismo , Feminino , Masculino , Camundongos , Elementos Reguladores de Transcrição , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo , Transcriptoma
3.
Development ; 141(19): 3662-71, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25249458

RESUMO

In mammals, a key transition in spermatogenesis is the exit from spermatogonial differentiation and mitotic proliferation and the entry into spermatocyte differentiation and meiosis. Although several genes that regulate this transition have been identified, how it is controlled and coordinated remains poorly understood. Here, we examine the role in male gametogenesis of the Doublesex-related gene Dmrt6 (Dmrtb1) in mice and find that Dmrt6 plays a crucial role in directing germ cells through the mitotic-to-meiotic germ cell transition. DMRT6 protein is expressed in late mitotic spermatogonia. In mice of the C57BL/6J strain, a null mutation in Dmrt6 disrupts spermatogonial differentiation, causing inappropriate expression of spermatogonial differentiation factors, including SOHLH1, SOHLH2 and DMRT1 as well as the meiotic initiation factor STRA8, and causing most late spermatogonia to undergo apoptosis. In mice of the 129Sv background, most Dmrt6 mutant germ cells can complete spermatogonial differentiation and enter meiosis, but they show defects in meiotic chromosome pairing, establishment of the XY body and processing of recombination foci, and they mainly arrest in mid-pachynema. mRNA profiling of Dmrt6 mutant testes together with DMRT6 chromatin immunoprecipitation sequencing suggest that DMRT6 represses genes involved in spermatogonial differentiation and activates genes required for meiotic prophase. Our results indicate that Dmrt6 plays a key role in coordinating the transition in gametogenic programs from spermatogonial differentiation and mitosis to spermatocyte development and meiosis.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Meiose/fisiologia , Mitose/fisiologia , Espermatogênese/fisiologia , Espermatogônias/metabolismo , Fatores de Transcrição/metabolismo , Animais , Bromodesoxiuridina , Imunoprecipitação da Cromatina , Biologia Computacional , Primers do DNA/genética , Imunofluorescência , Regulação da Expressão Gênica no Desenvolvimento/genética , Vetores Genéticos/genética , Genótipo , Fatores de Diferenciação de Crescimento/metabolismo , Marcação In Situ das Extremidades Cortadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sequência de RNA , Espermatogônias/citologia , Fatores de Transcrição/genética
4.
Nature ; 476(7358): 101-4, 2011 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-21775990

RESUMO

Sex in mammals is determined in the fetal gonad by the presence or absence of the Y chromosome gene Sry, which controls whether bipotential precursor cells differentiate into testicular Sertoli cells or ovarian granulosa cells. This pivotal decision in a single gonadal cell type ultimately controls sexual differentiation throughout the body. Sex determination can be viewed as a battle for primacy in the fetal gonad between a male regulatory gene network in which Sry activates Sox9 and a female network involving WNT/ß-catenin signalling. In females the primary sex-determining decision is not final: loss of the FOXL2 transcription factor in adult granulosa cells can reprogram granulosa cells into Sertoli cells. Here we show that sexual fate is also surprisingly labile in the testis: loss of the DMRT1 transcription factor in mouse Sertoli cells, even in adults, activates Foxl2 and reprograms Sertoli cells into granulosa cells. In this environment, theca cells form, oestrogen is produced and germ cells appear feminized. Thus Dmrt1 is essential to maintain mammalian testis determination, and competing regulatory networks maintain gonadal sex long after the fetal choice between male and female. Dmrt1 and Foxl2 are conserved throughout vertebrates and Dmrt1-related sexual regulators are conserved throughout metazoans. Antagonism between Dmrt1 and Foxl2 for control of gonadal sex may therefore extend beyond mammals. Reprogramming due to loss of Dmrt1 also may help explain the aetiology of human syndromes linked to DMRT1, including disorders of sexual differentiation and testicular cancer.


Assuntos
Caracteres Sexuais , Processos de Determinação Sexual/fisiologia , Diferenciação Sexual/fisiologia , Testículo/metabolismo , Fatores de Transcrição/metabolismo , Envelhecimento/fisiologia , Animais , Animais Recém-Nascidos , Transdiferenciação Celular , Feminino , Feminização/genética , Proteína Forkhead Box L2 , Fatores de Transcrição Forkhead/biossíntese , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Células da Granulosa/citologia , Células da Granulosa/metabolismo , Masculino , Camundongos , Modelos Biológicos , Ovário/citologia , Ovário/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição SOX9/metabolismo , Células de Sertoli/citologia , Células de Sertoli/metabolismo , Processos de Determinação Sexual/genética , Diferenciação Sexual/genética , Testículo/citologia , Células Tecais/metabolismo , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética
5.
Dev Biol ; 377(1): 67-78, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23473982

RESUMO

Dmrt1 (doublesex and mab-3 related transcription factor (1) is a regulator of testis development in vertebrates that has been implicated in testicular germ cell tumors of mouse and human. In the fetal mouse testis Dmrt1 regulates germ cell pluripotency in a strain-dependent manner. Loss of Dmrt1 in 129Sv strain mice results in a >90% incidence of testicular teratomas, tumors consisting cells of multiple germ layers; by contrast, these tumors have never been observed in Dmrt1 mutants of C57BL/6J (B6) or mixed genetic backgrounds. To further investigate the interaction between Dmrt1 and genetic background we compared mRNA expression in wild type and Dmrt1 mutant fetal testes of 129Sv and B6 mice at embryonic day 15.5 (E15.5), prior to overt tumorigenesis. Loss of Dmrt1 caused misexpression of overlapping but distinct sets of mRNAs in the two strains. The mRNAs that were selectively affected included some that changed expression only in one strain or the other and some that changed in both strains but to a greater degree in one versus the other. In particular, loss of Dmrt1 in 129Sv testes caused a more severe failure to silence regulators of pluripotency than in B6 testes. A number of genes misregulated in 129Sv mutant testes also are misregulated in human testicular germ cell tumors (TGCTs), suggesting similar etiology between germ cell tumors in mouse and man. Expression profiling showed that DMRT1 also regulates pluripotency genes in the fetal ovary, although Dmrt1 mutant females do not develop teratomas. Pathway analysis indicated disruption of several signaling pathways in Dmrt1 mutant fetal testes, including Nodal, Notch, and GDNF. We used a Nanos3-cre knock-in allele to perform conditional gene targeting, testing the GDNF coreceptors Gfra1 and Ret for effects on teratoma susceptibility. Conditional deletion of Gfra1 but not Ret in fetal germ cells of animals outcrossed to 129Sv caused a modest but significant elevation in tumor incidence. Despite some variability in genetic background in these crosses, this result is consistent with previous genetic mapping of teratoma susceptibility loci to the region containing Gfra1. Using Nanos3-cre we also uncovered a strong genetic interaction between Dmrt1 and Nanos3, suggesting parallel functions for these two genes in fetal germ cells. Finally, we used chromatin immunoprecipitation (ChIP-seq) analysis to identify a number of potentially direct DMRT1 targets. This analysis suggested that DMRT1 controls pluripotency via transcriptional repression of Esrrb, Nr5a2/Lrh1, and Sox2. Given the strong evidence for involvement of DMRT1 in human TGCT, the downstream genes and pathways identified in this study provide potentially useful candidates for roles in the human disease.


Assuntos
Feto/patologia , Células Germinativas/patologia , Neoplasias/embriologia , Neoplasias/patologia , Células-Tronco Pluripotentes/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Proliferação de Células , DNA/metabolismo , DNA-Citosina Metilases/metabolismo , Suscetibilidade a Doenças , Feminino , Feto/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/metabolismo , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Neoplasias/metabolismo , Proteína Nodal/genética , Proteína Nodal/metabolismo , Ovário/embriologia , Ovário/enzimologia , Ovário/patologia , Células-Tronco Pluripotentes/citologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Especificidade da Espécie , Testículo/embriologia , Testículo/metabolismo , Testículo/patologia
6.
Proc Natl Acad Sci U S A ; 107(30): 13360-5, 2010 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-20616082

RESUMO

The DM domain proteins Doublesex- and MAB-3-related transcription factors (DMRTs) are widely conserved in metazoan sex determination and sexual differentiation. One of these proteins, DMRT1, plays diverse and essential roles in development of the vertebrate testis. In mammals DMRT1 is expressed and required in both germ cells and their supporting Sertoli cells. Despite its critical role in testicular development, little is known about how DMRT1 functions as a transcription factor or what genes it binds and regulates. We combined ChIP methods with conditional gene targeting and mRNA expression analysis and identified almost 1,400 promoter-proximal regions bound by DMRT1 in the juvenile mouse testis and determined how expression of the associated mRNAs is affected when Dmrt1 is selectively mutated in germ cells or Sertoli cells. These analyses revealed that DMRT1 is a bifunctional transcriptional regulator, activating some genes and repressing others. ChIP analysis using conditional mutant testes showed that DNA binding and transcriptional regulation of individual target genes can differ between germ cells and Sertoli cells. Genes bound by DMRT1 in vivo were enriched for a motif closely resembling the sequence DMRT1 prefers in vitro. Differential response of genes to loss of DMRT1 corresponded to differences in the enriched motif, suggesting that other transacting factors may modulate DMRT1 activity. DMRT1 bound its own promoter and those of six other Dmrt genes, indicating auto- and cross-regulation of these genes. Many of the DMRT1 target genes identified here are known to be important for a variety of functions in testicular development; the others are candidates for further investigation.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Genoma , Testículo/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Sítios de Ligação/genética , Proteínas de Transporte/classificação , Proteínas de Transporte/genética , Linhagem Celular , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Masculino , Camundongos , Camundongos Knockout , Regiões Promotoras Genéticas/genética , Ligação Proteica , Testículo/crescimento & desenvolvimento , Fatores de Transcrição/genética , Ativação Transcricional , Transfecção
7.
Dev Biol ; 356(1): 63-70, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21621532

RESUMO

Dmrt1 belongs to the DM domain gene family of conserved sexual regulators. In the mouse Dmrt1 is expressed in the genital ridge (the gonadal primordium) in both sexes and then becomes testis-specific shortly after sex determination. The essential role of DMRT1 in testicular differentiation is well established, and includes transcriptional repression of the meiotic inducer Stra8. However Dmrt1 mutant females are fertile and the role of Dmrt1 in the ovary has not been studied. Here we show in the mouse that most Dmrt1 mutant germ cells in the fetal ovary have greatly reduced expression of STRA8, and fail to properly localize SYCP3 and γH2AX during meiotic prophase. Lack of DMRT1 in the fetal ovary results in the formation of many fewer primordial follicles in the juvenile ovary, although these are sufficient for fertility. Genome-wide chromatin immunoprecipitiation (ChIP-chip) and quantitative ChIP (qChIP) combined with mRNA expression profiling suggests that transcriptional activation of Stra8 in fetal germ cells is the main function of DMRT1 in females, and that this regulation likely is direct. Thus DMRT1 controls Stra8 sex-specifically, activating it in the fetal ovary and repressing it in the adult testis.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Oogênese , Ovário/crescimento & desenvolvimento , Óvulo/metabolismo , Proteínas/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Ciclo Celular , Proteínas de Ligação a DNA , Feminino , Histonas/metabolismo , Prófase Meiótica I , Camundongos , Mutação , Proteínas Nucleares/metabolismo , Ovário/citologia , Ovário/metabolismo , Óvulo/citologia , Fatores de Transcrição/genética
8.
Proc Natl Acad Sci U S A ; 106(52): 22323-8, 2009 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-20007774

RESUMO

Dmrt1 (doublesex and mab-3 related transcription factor 1) is a conserved transcriptional regulator of male differentiation required for testicular development in vertebrates. Here, we show that in mice of the 129Sv strain, loss of Dmrt1 causes a high incidence of teratomas, whereas these tumors do not form in Dmrt1 mutant C57BL/6J mice. Conditional gene targeting indicates that Dmrt1 is required in fetal germ cells but not in Sertoli cells to prevent teratoma formation. Mutant 129Sv germ cells undergo apparently normal differentiation up to embryonic day 13.5 (E13.5), but some cells fail to arrest mitosis and ectopically express pluripotency markers. Expression analysis and chromatin immunoprecipitation identified DMRT1 target genes, whose missexpression may underlie teratoma formation. DMRT1 indirectly activates the GDNF coreceptor Ret, and it directly represses the pluripotency regulator Sox2. Analysis of human germ cell tumors reveals similar gene expression changes correlated to DMRT1 levels. Dmrt1 behaves genetically as a dose-sensitive tumor suppressor gene in 129Sv mice, and natural variation in Dmrt1 activity can confer teratoma susceptibility. This work reveals a genetic link between testicular dysgenesis, pluripotency regulation, and teratoma susceptibility that is highly sensitive to genetic background and to gene dosage.


Assuntos
Células-Tronco Fetais/citologia , Células-Tronco Fetais/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Espermatogênese/genética , Espermatogênese/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Animais , Diferenciação Celular , Proliferação de Células , Dosagem de Genes , Expressão Gênica , Genes Supressores de Tumor , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias Embrionárias de Células Germinativas/genética , Neoplasias Embrionárias de Células Germinativas/metabolismo , Neoplasias Embrionárias de Células Germinativas/patologia , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fenótipo , Proteínas Proto-Oncogênicas c-ret/genética , Proteínas Proto-Oncogênicas c-ret/metabolismo , Teratoma/genética , Teratoma/metabolismo , Teratoma/patologia , Neoplasias Testiculares/genética , Neoplasias Testiculares/metabolismo , Neoplasias Testiculares/patologia
9.
Sex Dev ; 16(2-3): 112-125, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34515237

RESUMO

Transcriptional regulators related to the invertebrate sexual regulators doublesex and mab-3 occur throughout metazoans and control sex in most animal groups. Seven of these DMRT genes are found in mammals, and mouse genetics has shown that one, Dmrt1, plays a crucial role in testis differentiation, both in germ cells and somatic cells. Deletions and, more recently, point mutations affecting human DMRT1 have demonstrated that its heterozygosity is associated with 46,XY complete gonadal dysgenesis. Most of our detailed knowledge of DMRT1 function in the testis, the focus of this review, derives from mouse studies, which have revealed that DMRT1 is essential for male somatic and germ cell differentiation and maintenance of male somatic cell fate after differentiation. Moreover, ectopic DMRT1 can reprogram differentiated female granulosa cells into male Sertoli-like cells. The ability of DMRT1 to control sexual cell fate likely derives from at least 3 properties. First, DMRT1 functionally collaborates with another key male sex regulator, SOX9, and possibly other proteins to maintain and reprogram sexual cell fate. Second, and related, DMRT1 appears to function as a pioneer transcription factor, binding "closed" inaccessible chromatin and promoting its opening to allow binding by other regulators including SOX9. Third, DMRT1 binds DNA by a highly unusual form of interaction and can bind with different stoichiometries.


Assuntos
Disgenesia Gonadal , Diferenciação Sexual , Fatores de Transcrição , Animais , Feminino , Humanos , Masculino , Camundongos , Células Germinativas/metabolismo , Diferenciação Sexual/genética , Testículo/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
G3 (Bethesda) ; 12(12)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36200842

RESUMO

Sex determination in mammals hinges on a cell fate decision in the fetal bipotential gonad between formation of male Sertoli cells or female granulosa cells. While this decision normally is permanent, loss of key cell fate regulators such as the transcription factors Dmrt1 and Foxl2 can cause postnatal transdifferentiation from Sertoli to granulosa-like (Dmrt1) or vice versa (Foxl2). Here, we examine the mechanism of male-to-female transdifferentiation in mice carrying either a null mutation of Dmrt1 or a point mutation, R111G, that alters the DNA-binding motif and causes human XY gonadal dysgenesis and sex reversal. We first define genes misexpressed during transdifferentiation and then show that female transcriptional regulators driving transdifferentiation in the mutant XY gonad (ESR2, LRH1, FOXL2) bind chromatin sites related to those normally bound in the XX ovary. We next define gene expression changes and abnormal chromatin compartments at the onset of transdifferentiation that may help destabilize cell fate and initiate the transdifferentiation process. We model the R111G mutation in mice and show that it causes dominant gonadal dysgenesis, analogous to its human phenotype but less severe. We show that R111G partially feminizes the testicular transcriptome and causes dominant disruption of DMRT1 binding specificity in vivo. These data help illuminate how transdifferentiation occurs when sexual cell fate maintenance is disrupted and identify chromatin sites and transcripts that may play key roles in the transdifferentiation process.


Assuntos
Transdiferenciação Celular , Disgenesia Gonadal , Animais , Feminino , Humanos , Masculino , Camundongos , Transdiferenciação Celular/genética , Cromatina/genética , Cromatina/metabolismo , Genômica , Disgenesia Gonadal/metabolismo , Gônadas/metabolismo , Processos de Determinação Sexual , Testículo/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Dev Biol ; 344(2): 827-35, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20553900

RESUMO

Hox genes of the Abdominal-B (Abd-B) class regulate gonadal development in diverse metazoans. Here we have investigated the role of the Abd-B homolog egl-5 in C. elegans gonadal development. Previous work showed that egl-5 is required male-specifically in the gonad and that mutant gonads are highly dysgenic and possibly feminized. We have used sex-specific gonadal reporter genes to confirm that the gonads of egl-5 males are extensively feminized. Sex-specific expression of egl-5 requires the global sex determination gene tra-1 and the gonadal masculinizing gene fkh-6, but mutagenesis of a short male gonadal enhancer element in egl-5 suggested that this regulation is indirect. Ectopic expression of EGL-5 in hermaphrodites is sufficient to induce male gonadal gene expression, indicating that EGL-5 plays an instructive role in male gonadal fate determination. EGL-5 acts in parallel with a Wnt/beta-catenin pathway to regulate male gonadal fates and can physically interact with the Wnt pathway transcription factor POP-1 and modulate activity of a POP-1 dependent reporter gene. We propose that EGL-5 imparts sex-specific function on POP-1 by recruiting it to male-specific gonadal target genes.


Assuntos
Genes Homeobox , Gônadas/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/fisiologia , Genes Reporter , Proteínas de Homeodomínio , Masculino , beta Catenina/genética , beta Catenina/metabolismo
12.
Dev Cell ; 8(6): 881-92, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15935777

RESUMO

Sexual dimorphism in the nervous system is required for sexual behavior and reproduction in many metazoan species. However, little is known of how sex determination pathways impose sex specificity on nervous system development. In C. elegans, the conserved sexual regulator MAB-3 controls several aspects of male development, including formation of V rays, male-specific sense organs required for mating. Here we show that MAB-3 promotes expression of the proneural protein LIN-32 in V ray precursors by transcriptional repression of ref-1, a member of the Hes family of neurogenic factors. Mutations in ref-1 restore lin-32::gfp expression and normal V ray development to mab-3 mutants, suggesting that ref-1 is the primary target of MAB-3 in the V ray lineage. Proteins related to MAB-3 (DM domain proteins) control sexual differentiation in diverse metazoans. We therefore suggest that regulation of Hes genes by DM domain proteins may be a general mechanism for specifying sex-specific neurons.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Neurônios/fisiologia , Processos de Determinação Sexual , Fatores de Transcrição/metabolismo , Animais , Animais Geneticamente Modificados , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Mapeamento Cromossômico/métodos , Ensaio de Desvio de Mobilidade Eletroforética/métodos , Fator de Crescimento Epidérmico/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Testes Genéticos/métodos , Masculino , Microinjeções/métodos , Modelos Biológicos , Mutagênese/fisiologia , Mutação , Fenótipo , Órgãos dos Sentidos/crescimento & desenvolvimento , Órgãos dos Sentidos/metabolismo , Diferenciação Sexual/genética , Transdução de Sinais/fisiologia
13.
BMC Mol Biol ; 8: 58, 2007 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-17605809

RESUMO

BACKGROUND: The DM domain is a zinc finger-like DNA binding motif first identified in the sexual regulatory proteins Doublesex (DSX) and MAB-3, and is widely conserved among metazoans. DM domain proteins regulate sexual differentiation in at least three phyla and also control other aspects of development, including vertebrate segmentation. Most DM domain proteins share little similarity outside the DM domain. DSX and MAB-3 bind partially overlapping DNA sequences, and DSX has been shown to interact with DNA via the minor groove without inducing DNA bending. DSX and MAB-3 exhibit unusually high DNA sequence specificity relative to other minor groove binding proteins. No detailed analysis of DNA binding by the seven vertebrate DM domain proteins, DMRT1-DMRT7 has been reported, and thus it is unknown whether they recognize similar or diverse DNA sequences. RESULTS: We used a random oligonucleotide in vitro selection method to determine DNA binding sites for six of the seven proteins. These proteins selected sites resembling that of DSX despite differences in the sequence of the DM domain recognition helix, but they varied in binding efficiency and in preferences for particular nucleotides, and some behaved anomalously in gel mobility shift assays. DMRT1 protein from mouse testis extracts binds the sequence we determined, and the DMRT proteins can bind their in vitro-defined sites in transfected cells. We also find that some DMRT proteins can bind DNA as heterodimers. CONCLUSION: Our results suggest that target gene specificity of the DMRT proteins does not derive exclusively from major differences in DNA binding specificity. Instead target specificity may come from more subtle differences in DNA binding preference between different homodimers, together with differences in binding specificity between homodimers versus heterodimers.


Assuntos
DNA/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Dimerização , Masculino , Camundongos , Oligonucleotídeos/metabolismo , Estrutura Terciária de Proteína , Testículo/metabolismo , Fatores de Transcrição/química
14.
Cancer Res ; 77(21): e15-e18, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29092930

RESUMO

The NCI Genomic Data Commons (GDC) was launched in 2016 and makes available over 4 petabytes (PB) of cancer genomic and associated clinical data to the research community. This dataset continues to grow and currently includes over 14,500 patients. The GDC is an example of a biomedical data commons, which collocates biomedical data with storage and computing infrastructure and commonly used web services, software applications, and tools to create a secure, interoperable, and extensible resource for researchers. The GDC is (i) a data repository for downloading data that have been submitted to it, and also a system that (ii) applies a common set of bioinformatics pipelines to submitted data; (iii) reanalyzes existing data when new pipelines are developed; and (iv) allows users to build their own applications and systems that interoperate with the GDC using the GDC Application Programming Interface (API). We describe the GDC API and how it has been used both by the GDC itself and by third parties. Cancer Res; 77(21); e15-18. ©2017 AACR.


Assuntos
Biologia Computacional/tendências , Genoma Humano , Genômica , Neoplasias/genética , Conjuntos de Dados como Assunto , Humanos , Internet , Software , Interface Usuário-Computador
17.
Genetics ; 166(1): 53-65, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15020406

RESUMO

To investigate the function of the essential U1 snRNP protein Prp40p, we performed a synthetic lethal screen in Saccharomyces cerevisiae. Using an allele of PRP40 that deletes 47 internal residues and causes only a slight growth defect, we identified aphenotypic mutations in three distinct complementation groups that conferred synthetic lethality. The synthetic phenotypes caused by these mutations were suppressed by wild-type copies of CRM1 (XPO1), YNL187w, and SME1, respectively. The strains whose synthetic phenotypes were suppressed by CRM1 contained no mutations in the CRM1 coding sequence or promoter. This indicates that overexpression of CRM1 confers dosage suppression of the synthetic lethality. Interestingly, PRP40 and YNL187w encode proteins with putative leucine-rich nuclear export signal (NES) sequences that fit the consensus sequence recognized by Crm1p. One of Prp40p's two NESs lies within the internal deletion. We demonstrate here that the NES sequences of Prp40p are functional for nuclear export in a leptomycin B-sensitive manner. Furthermore, mutation of these NES sequences confers temperature-sensitive growth and a pre-mRNA splicing defect. Although we do not expect that yeast snRNPs undergo compartmentalized biogenesis like their metazoan counterparts, our results suggest that Prp40p and Ynl187wp contain redundant NESs that aid in an important, Crm1p-mediated nuclear export event.


Assuntos
Ribonucleoproteína Nuclear Pequena U1/genética , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Genes Fúngicos , Mutação , Fenótipo , Splicing de RNA
18.
Nat Struct Mol Biol ; 22(6): 442-51, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26005864

RESUMO

DMRT transcription factors are deeply conserved regulators of metazoan sexual development. They share the DM DNA-binding domain, a unique intertwined double zinc-binding module followed by a C-terminal recognition helix, which binds a pseudopalindromic target DNA. Here we show that DMRT proteins use a unique binding interaction, inserting two adjacent antiparallel recognition helices into a widened DNA major groove to make base-specific contacts. Versatility in how specific base contacts are made allows human DMRT1 to use multiple DNA binding modes (tetramer, trimer and dimer). Chromatin immunoprecipitation with exonuclease treatment (ChIP-exo) indicates that multiple DNA binding modes also are used in vivo. We show that mutations affecting residues crucial for DNA recognition are associated with an intersex phenotype in flies and with male-to-female sex reversal in humans. Our results illuminate an ancient molecular interaction underlying much of metazoan sexual development.


Assuntos
DNA/metabolismo , Fatores de Transcrição/metabolismo , Animais , Imunoprecipitação da Cromatina , Análise Mutacional de DNA , Dípteros , Exodesoxirribonucleases , Perfilação da Expressão Gênica , Humanos , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Análise de Sequência de DNA , Sexo , Fatores de Transcrição/química , Fatores de Transcrição/genética
19.
Dev Cell ; 19(4): 612-24, 2010 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-20951351

RESUMO

The switch from mitosis to meiosis is a unique feature of germ cell development. In mammals, meiotic initiation requires retinoic acid (RA), which activates meiotic inducers, including Stra8, but how the switch to meiosis is controlled in male germ cells (spermatogonia) remains poorly understood. Here we examine the role of the Doublesex-related transcription factor DMRT1 in adult spermatogenesis using conditional gene targeting in the mouse. Loss of Dmrt1 causes spermatogonia to precociously exit the spermatogonial program and enter meiosis. Therefore, DMRT1 determines whether male germ cells undergo mitosis and spermatogonial differentiation or meiosis. Loss of Dmrt1 in spermatogonia also disrupts cyclical gene expression in Sertoli cells. DMRT1 acts in spermatogonia to restrict RA responsiveness, directly repress Stra8 transcription, and activate transcription of the spermatogonial differentiation factor Sohlh1, thereby preventing meiosis and promoting spermatogonial development. By coordinating spermatogonial development and mitotic amplification with meiosis, DMRT1 allows abundant, continuous production of sperm.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Drosophila/química , Meiose/genética , Mitose/genética , Homologia de Sequência de Aminoácidos , Espermatozoides/citologia , Fatores de Transcrição/metabolismo , Transcrição Gênica , Proteínas Adaptadoras de Transdução de Sinal , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Cinética , Masculino , Meiose/efeitos dos fármacos , Camundongos , Mitose/efeitos dos fármacos , Mutação/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Proteínas/genética , Células de Sertoli/citologia , Células de Sertoli/efeitos dos fármacos , Células de Sertoli/metabolismo , Espermatogênese/efeitos dos fármacos , Espermatogênese/genética , Espermatogônias/citologia , Espermatogônias/efeitos dos fármacos , Espermatogônias/metabolismo , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica/efeitos dos fármacos , Tretinoína/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa