Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(37): e2115610119, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36067286

RESUMO

Real-world tasks require coordination of working memory, decision-making, and planning, yet these cognitive functions have disproportionately been studied as independent modular processes in the brain. Here, we propose that contingency representations, defined as mappings for how future behaviors depend on upcoming events, can unify working memory and planning computations. We designed a task capable of disambiguating distinct types of representations. In task-optimized recurrent neural networks, we investigated possible circuit mechanisms for contingency representations and found that these representations can explain neurophysiological observations from the prefrontal cortex during working memory tasks. Our experiments revealed that human behavior is consistent with contingency representations and not with traditional sensory models of working memory. Finally, we generated falsifiable predictions for neural data to identify contingency representations in neural data and to dissociate different models of working memory. Our findings characterize a neural representational strategy that can unify working memory, planning, and context-dependent decision-making.


Assuntos
Simulação por Computador , Memória de Curto Prazo , Modelos Neurológicos , Redes Neurais de Computação , Humanos , Córtex Pré-Frontal/fisiologia
2.
J Neurosci ; 42(6): 1035-1053, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34887320

RESUMO

The synaptic balance between excitation and inhibition (E/I balance) is a fundamental principle of cortical circuits, and disruptions in E/I balance are commonly linked to cognitive deficits such as impaired decision-making. Explanatory gaps remain in a mechanistic understanding of how E/I balance contributes to cognitive computations, and how E/I disruptions at the synaptic level can propagate to induce behavioral deficits. Here, we studied how E/I perturbations may impair perceptual decision-making in a biophysically-based association cortical circuit model. We found that both elevating and lowering E/I ratio, via NMDA receptor (NMDAR) hypofunction at inhibitory interneurons and excitatory pyramidal neurons, respectively, can similarly impair psychometric performance, following an inverted-U dependence. Nonetheless, these E/I perturbations differentially alter the process of evidence accumulation across time. Under elevated E/I ratio, decision-making is impulsive, overweighting early evidence and underweighting late evidence. Under lowered E/I ratio, decision-making is indecisive, with both evidence integration and winner-take-all competition weakened. The distinct time courses of evidence accumulation at the circuit level can be measured at the behavioral level, using multiple psychophysical task paradigms which provide dissociable predictions. These results are well captured by a generalized drift-diffusion model (DDM) with self-coupling, implementing leaky or unstable integration, which thereby links biophysical circuit modeling to algorithmic process modeling and facilitates model fitting to behavioral choice data. In general, our findings characterize critical roles of cortical E/I balance in cognitive function, bridging from biophysical to behavioral levels of analysis.SIGNIFICANCE STATEMENT Cognitive deficits in multiple neuropsychiatric disorders, including schizophrenia, have been associated with alterations in the balance of synaptic excitation and inhibition (E/I) in cerebral cortical circuits. However, the circuit mechanisms by which E/I imbalance leads to cognitive deficits in decision-making have remained unclear. We used a computational model of decision-making in cortical circuits to study the neural and behavioral effects of E/I imbalance. We found that elevating and lowering E/I ratio produce distinct modes of dysfunction in decision-making processes, which can be dissociated in behavior through psychophysical task paradigms. The biophysical circuit model can be mapped onto a psychological model of decision-making which can facilitate experimental tests of model predictions.


Assuntos
Córtex Cerebral/fisiologia , Simulação por Computador , Tomada de Decisões/fisiologia , Modelos Neurológicos , Vias Neurais/fisiologia , Animais , Humanos
3.
J Neurosci ; 41(43): 8928-8945, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34551937

RESUMO

A hallmark neuronal correlate of working memory (WM) is stimulus-selective spiking activity of neurons in PFC during mnemonic delays. These observations have motivated an influential computational modeling framework in which WM is supported by persistent activity. Recently, this framework has been challenged by arguments that observed persistent activity may be an artifact of trial-averaging, which potentially masks high variability of delay activity at the single-trial level. In an alternative scenario, WM delay activity could be encoded in bursts of selective neuronal firing which occur intermittently across trials. However, this alternative proposal has not been tested on single-neuron spike-train data. Here, we developed a framework for addressing this issue by characterizing the trial-to-trial variability of neuronal spiking quantified by Fano factor (FF). By building a doubly stochastic Poisson spiking model, we first demonstrated that the burst-coding proposal implies a significant increase in FF positively correlated with firing rate, and thus loss of stability across trials during the delay. Simulation of spiking cortical circuit WM models further confirmed that FF is a sensitive measure that can well dissociate distinct WM mechanisms. We then tested these predictions on datasets of single-neuron recordings from macaque PFC during three WM tasks. In sharp contrast to the burst-coding model predictions, we only found a small fraction of neurons showing increased WM-dependent burstiness, and stability across trials during delay was strengthened in empirical data. Therefore, reduced trial-to-trial variability during delay provides strong constraints on the contribution of single-neuron intermittent bursting to WM maintenance.SIGNIFICANCE STATEMENT There are diverging classes of theoretical models explaining how information is maintained in working memory by cortical circuits. In an influential model class, neurons exhibit persistent elevated memorandum-selective firing, whereas a recently developed class of burst-coding models suggests that persistent activity is an artifact of trial-averaging, and spiking is sparse in each single trial, subserved by brief intermittent bursts. However, this alternative picture has not been characterized or tested on empirical spike-train data. Here we combine mathematical analysis, computational model simulation, and experimental data analysis to test empirically these two classes of models and show that the trial-to-trial variability of empirical spike trains is not consistent with burst coding. These findings provide constraints for theoretical models of working memory.


Assuntos
Potenciais de Ação/fisiologia , Memória de Curto Prazo/fisiologia , Modelos Neurológicos , Córtex Pré-Frontal/fisiologia , Animais , Macaca mulatta , Masculino , Distribuição de Poisson , Processos Estocásticos
4.
Neuroimage ; 254: 119139, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35346841

RESUMO

Integrating motivational signals with cognition is critical for goal-directed activities. The mechanisms that link neural changes with motivated working memory continue to be understood. Here, we tested how externally cued and non-cued (internally represented) reward and loss impact spatial working memory precision and neural circuits in human subjects using fMRI. We translated the classic delayed-response spatial working memory paradigm from non-human primate studies to take advantage of a continuous numeric measure of working memory precision, and the wealth of translational neuroscience yielded by these studies. Our results demonstrated that both cued and non-cued reward and loss improved spatial working memory precision. Visual association regions of the posterior prefrontal and parietal cortices, specifically the precentral sulcus (PCS) and intraparietal sulcus (IPS), had increased BOLD signal during incentivized spatial working memory. A subset of these regions had trial-by-trial increases in BOLD signal that were associated with better working memory precision, suggesting that these regions may be critical for linking neural signals with motivated working memory. In contrast, regions straddling executive networks, including areas in the dorsolateral prefrontal cortex, anterior parietal cortex and cerebellum displayed decreased BOLD signal during incentivized working memory. While reward and loss similarly impacted working memory processes, they dissociated during feedback when money won or avoided in loss was given based on working memory performance. During feedback, the trial-by-trial amount and valence of reward/loss received was dissociated amongst regions such as the ventral striatum, habenula and periaqueductal gray. Overall, this work suggests motivated spatial working memory is supported by complex sensory processes, and that the IPS and PCS in the posterior frontoparietal cortices may be key regions for integrating motivational signals with spatial working memory precision.


Assuntos
Memória de Curto Prazo , Motivação , Animais , Mapeamento Encefálico , Humanos , Imageamento por Ressonância Magnética , Memória de Curto Prazo/fisiologia , Lobo Parietal/diagnóstico por imagem , Lobo Parietal/fisiologia , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiologia , Recompensa
5.
PLoS Comput Biol ; 17(3): e1008791, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33705386

RESUMO

We are constantly faced with decisions between alternatives defined by multiple attributes, necessitating an evaluation and integration of different information sources. Time-varying signals in multiple brain areas are implicated in decision-making; but we lack a rigorous biophysical description of how basic circuit properties, such as excitatory-inhibitory (E/I) tone and cascading nonlinearities, shape attribute processing and choice behavior. Furthermore, how such properties govern choice performance under varying levels of environmental uncertainty is unknown. We investigated two-attribute, two-alternative decision-making in a dynamical, cascading nonlinear neural network with three layers: an input layer encoding choice alternative attribute values; an intermediate layer of modules processing separate attributes; and a final layer producing the decision. Depending on intermediate layer E/I tone, the network displays distinct regimes characterized by linear (I), convex (II) or concave (III) choice indifference curves. In regimes I and II, each option's attribute information is additively integrated. In regime III, time-varying nonlinear operations amplify the separation between offer distributions by selectively attending to the attribute with the larger differences in input values. At low environmental uncertainty, a linear combination most consistently selects higher valued alternatives. However, at high environmental uncertainty, regime III is more likely than a linear operation to select alternatives with higher value. Furthermore, there are conditions where readout from the intermediate layer could be experimentally indistinguishable from the final layer. Finally, these principles are used to examine multi-attribute decisions in systems with reduced inhibitory tone, leading to predictions of different choice patterns and overall performance between those with restrictions on inhibitory tone and neurotypicals.


Assuntos
Encéfalo/fisiologia , Tomada de Decisões , Modelos Neurológicos , Redes Neurais de Computação , Biologia Computacional , Humanos , Incerteza
6.
Proc Natl Acad Sci U S A ; 116(10): 4689-4695, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30782826

RESUMO

The primate cerebral cortex displays a hierarchy that extends from primary sensorimotor to association areas, supporting increasingly integrated function underpinned by a gradient of heterogeneity in the brain's microcircuits. The extent to which these hierarchical gradients are unique to primate or may reflect a conserved mammalian principle of brain organization remains unknown. Here we report the topographic similarity of large-scale gradients in cytoarchitecture, gene expression, interneuron cell densities, and long-range axonal connectivity, which vary from primary sensory to prefrontal areas of mouse cortex, highlighting an underappreciated spatial dimension of mouse cortical specialization. Using the T1-weighted:T2-weighted (T1w:T2w) magnetic resonance imaging map as a common spatial reference for comparison across species, we report interspecies agreement in a range of large-scale cortical gradients, including a significant correspondence between gene transcriptional maps in mouse cortex with their human orthologs in human cortex, as well as notable interspecies differences. Our results support the view of systematic structural variation across cortical areas as a core organizational principle that may underlie hierarchical specialization in mammalian brains.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Proteínas/genética , Animais , Mapeamento Encefálico , Córtex Cerebral/metabolismo , Expressão Gênica , Humanos , Imageamento por Ressonância Magnética , Camundongos , Proteínas/metabolismo , Transcrição Gênica
7.
J Neurosci ; 40(38): 7326-7342, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32839233

RESUMO

Although the decisions of our daily lives often occur in the context of temporal and reward structures, the impact of such regularities on decision-making strategy is poorly understood. Here, to explore how temporal and reward context modulate strategy, we trained 2 male rhesus monkeys to perform a novel perceptual decision-making task with asymmetric rewards and time-varying evidence reliability. To model the choice and response time patterns, we developed a computational framework for fitting generalized drift-diffusion models, which flexibly accommodate diverse evidence accumulation strategies. We found that a dynamic urgency signal and leaky integration, in combination with two independent forms of reward biases, best capture behavior. We also tested how temporal structure influences urgency by systematically manipulating the temporal structure of sensory evidence, and found that the time course of urgency was affected by temporal context. Overall, our approach identified key components of cognitive mechanisms for incorporating temporal and reward structure into decisions.SIGNIFICANCE STATEMENT In everyday life, decisions are influenced by many factors, including reward structures and stimulus timing. While reward and timing have been characterized in isolation, ecologically valid decision-making involves a multiplicity of factors acting simultaneously. This raises questions about whether the same decision-making strategy is used when these two factors are concurrently manipulated. To address these questions, we trained rhesus monkeys to perform a novel decision-making task with both reward asymmetry and temporal uncertainty. In order to understand their strategy and hint at its neural mechanisms, we used the new generalized drift diffusion modeling framework to model both reward and timing mechanisms. We found two of each reward and timing mechanisms are necessary to explain our data.


Assuntos
Tomada de Decisões , Recompensa , Animais , Viés , Encéfalo/fisiologia , Macaca mulatta , Masculino , Modelos Neurológicos , Percepção , Fatores de Tempo
8.
Neuroimage ; 220: 117038, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32585343

RESUMO

Studies of large-scale brain organization have revealed interesting relationships between spatial gradients in brain maps across multiple modalities. Evaluating the significance of these findings requires establishing statistical expectations under a null hypothesis of interest. Through generative modeling of synthetic data that instantiate a specific null hypothesis, quantitative benchmarks can be derived for arbitrarily complex statistical measures. Here, we present a generative null model, provided as an open-access software platform, that generates surrogate maps with spatial autocorrelation (SA) matched to SA of a target brain map. SA is a prominent and ubiquitous property of brain maps that violates assumptions of independence in conventional statistical tests. Our method can simulate surrogate brain maps, constrained by empirical data, that preserve the SA of cortical, subcortical, parcellated, and dense brain maps. We characterize how SA impacts p-values in pairwise brain map comparisons. Furthermore, we demonstrate how SA-preserving surrogate maps can be used in gene set enrichment analyses to test hypotheses of interest related to brain map topography. Our findings demonstrate the utility of SA-preserving surrogate maps for hypothesis testing in complex statistical analyses, and underscore the need to disambiguate meaningful relationships from chance associations in studies of large-scale brain organization.


Assuntos
Encéfalo/diagnóstico por imagem , Modelos Estatísticos , Neuroimagem , Análise Espacial , Mapeamento Encefálico , Conectoma , Humanos
9.
Cereb Cortex ; 29(12): 5269-5284, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31066899

RESUMO

Schizophrenia (SCZ) is recognized as a disorder of distributed brain dysconnectivity. While progress has been made delineating large-scale functional networks in SCZ, little is known about alterations in grey matter integrity of these networks. We used a multivariate approach to identify the structural covariance of the salience, default, motor, visual, fronto-parietal control, and dorsal attention networks. We derived individual scores reflecting covariance in each structural image for a given network. Seed-based multivariate analyses were conducted on structural images in a discovery (n = 90) and replication (n = 74) sample of SCZ patients and healthy controls. We first validated patterns across all networks, consistent with well-established functional connectivity reports. Next, across two SCZ samples, we found reliable and robust reductions in structural integrity of the fronto-parietal control and salience networks, but not default, dorsal attention, motor and sensory networks. Well-powered exploratory analyses failed to identify relationships with symptoms. These findings provide evidence of selective structural decline in associative networks in SCZ. Such decline may be linked with recently identified functional disturbances in associative networks, providing more sensitive multi-modal network-level probes in SCZ. Absence of symptom effects suggests that identified disturbances may underlie a trait-type marker in SCZ.


Assuntos
Atenção/fisiologia , Encéfalo/fisiopatologia , Rede Nervosa/fisiopatologia , Esquizofrenia/fisiopatologia , Adulto , Mapeamento Encefálico/métodos , Feminino , Substância Cinzenta/fisiopatologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/fisiopatologia
10.
Proc Natl Acad Sci U S A ; 114(2): 394-399, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28028221

RESUMO

Working memory (WM) is a cognitive function for temporary maintenance and manipulation of information, which requires conversion of stimulus-driven signals into internal representations that are maintained across seconds-long mnemonic delays. Within primate prefrontal cortex (PFC), a critical node of the brain's WM network, neurons show stimulus-selective persistent activity during WM, but many of them exhibit strong temporal dynamics and heterogeneity, raising the questions of whether, and how, neuronal populations in PFC maintain stable mnemonic representations of stimuli during WM. Here we show that despite complex and heterogeneous temporal dynamics in single-neuron activity, PFC activity is endowed with a population-level coding of the mnemonic stimulus that is stable and robust throughout WM maintenance. We applied population-level analyses to hundreds of recorded single neurons from lateral PFC of monkeys performing two seminal tasks that demand parametric WM: oculomotor delayed response and vibrotactile delayed discrimination. We found that the high-dimensional state space of PFC population activity contains a low-dimensional subspace in which stimulus representations are stable across time during the cue and delay epochs, enabling robust and generalizable decoding compared with time-optimized subspaces. To explore potential mechanisms, we applied these same population-level analyses to theoretical neural circuit models of WM activity. Three previously proposed models failed to capture the key population-level features observed empirically. We propose network connectivity properties, implemented in a linear network model, which can underlie these features. This work uncovers stable population-level WM representations in PFC, despite strong temporal neural dynamics, thereby providing insights into neural circuit mechanisms supporting WM.


Assuntos
Memória de Curto Prazo/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , Cognição/fisiologia , Macaca mulatta/fisiologia , Modelos Neurológicos , Dinâmica Populacional
11.
J Neurosci ; 38(32): 7020-7028, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-30089641

RESUMO

Persistent activity generated in the PFC during the delay period of working memory tasks represents information about stimuli held in memory and determines working memory performance. Alternative models of working memory, depending on the rhythmicity of discharges or exclusively on short-term synaptic plasticity, are inconsistent with the neurophysiological data.Dual Perspectives Companion Paper:Working Memory: Delay Activity, Yes! Persistent Activity? Maybe Not, by Mikael Lundqvist, Pawel Herman, and Earl K. Miller.


Assuntos
Memória de Curto Prazo/fisiologia , Modelos Neurológicos , Córtex Pré-Frontal/fisiologia , Potenciais de Ação , Animais , Artefatos , Eletrodos Implantados , Fixação Ocular/fisiologia , Haplorrinos , Humanos , Rede Nervosa/fisiologia , Redes Neurais de Computação , Neurônios/metabolismo , Projetos de Pesquisa , Movimentos Sacádicos/fisiologia , Sinapses/fisiologia , Fatores de Tempo
13.
Proc Natl Acad Sci U S A ; 113(2): E219-28, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26699491

RESUMO

Schizophrenia may involve an elevated excitation/inhibition (E/I) ratio in cortical microcircuits. It remains unknown how this regulatory disturbance maps onto neuroimaging findings. To address this issue, we implemented E/I perturbations within a neural model of large-scale functional connectivity, which predicted hyperconnectivity following E/I elevation. To test predictions, we examined resting-state functional MRI in 161 schizophrenia patients and 164 healthy subjects. As predicted, patients exhibited elevated functional connectivity that correlated with symptom levels, and was most prominent in association cortices, such as the fronto-parietal control network. This pattern was absent in patients with bipolar disorder (n = 73). To account for the pattern observed in schizophrenia, we integrated neurobiologically plausible, hierarchical differences in association vs. sensory recurrent neuronal dynamics into our model. This in silico architecture revealed preferential vulnerability of association networks to E/I imbalance, which we verified empirically. Reported effects implicate widespread microcircuit E/I imbalance as a parsimonious mechanism for emergent inhomogeneous dysconnectivity in schizophrenia.


Assuntos
Rede Nervosa/fisiopatologia , Esquizofrenia/fisiopatologia , Encéfalo/fisiopatologia , Simulação por Computador , Lobo Frontal/fisiopatologia , Humanos , Modelos Neurológicos , Inibição Neural/fisiologia , Lobo Parietal/fisiopatologia
14.
J Neurosci ; 37(50): 12167-12186, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29114071

RESUMO

Working memory (WM) and decision-making (DM) are fundamental cognitive functions involving a distributed interacting network of brain areas, with the posterior parietal cortex (PPC) and prefrontal cortex (PFC) at the core. However, the shared and distinct roles of these areas and the nature of their coordination in cognitive function remain poorly understood. Biophysically based computational models of cortical circuits have provided insights into the mechanisms supporting these functions, yet they have primarily focused on the local microcircuit level, raising questions about the principles for distributed cognitive computation in multiregional networks. To examine these issues, we developed a distributed circuit model of two reciprocally interacting modules representing PPC and PFC circuits. The circuit architecture includes hierarchical differences in local recurrent structure and implements reciprocal long-range projections. This parsimonious model captures a range of behavioral and neuronal features of frontoparietal circuits across multiple WM and DM paradigms. In the context of WM, both areas exhibit persistent activity, but, in response to intervening distractors, PPC transiently encodes distractors while PFC filters distractors and supports WM robustness. With regard to DM, the PPC module generates graded representations of accumulated evidence supporting target selection, while the PFC module generates more categorical responses related to action or choice. These findings suggest computational principles for distributed, hierarchical processing in cortex during cognitive function and provide a framework for extension to multiregional models.SIGNIFICANCE STATEMENT Working memory and decision-making are fundamental "building blocks" of cognition, and deficits in these functions are associated with neuropsychiatric disorders such as schizophrenia. These cognitive functions engage distributed networks with prefrontal cortex (PFC) and posterior parietal cortex (PPC) at the core. It is not clear, however, what the contributions of PPC and PFC are in light of the computations that subserve working memory and decision-making. We constructed a biophysical model of a reciprocally connected frontoparietal circuit that revealed shared and distinct functions for the PFC and PPC across working memory and decision-making tasks. Our parsimonious model connects circuit-level properties to cognitive functions and suggests novel design principles beyond those of local circuits for cognitive processing in multiregional brain networks.


Assuntos
Simulação por Computador , Conectoma , Tomada de Decisões/fisiologia , Memória de Curto Prazo/fisiologia , Modelos Neurológicos , Redes Neurais de Computação , Lobo Parietal/fisiologia , Córtex Pré-Frontal/fisiologia , Potenciais de Ação , Humanos , Transmissão Sináptica
15.
Cereb Cortex ; 27(11): 5156-5169, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27702810

RESUMO

Schizophrenia (SCZ) is a disabling neuropsychiatric disease associated with disruptions across distributed neural systems. Resting-state functional magnetic resonance imaging has identified extensive abnormalities in the blood-oxygen level-dependent signal in SCZ patients, including alterations in the average signal over the brain-i.e. the "global" signal (GS). It remains unknown, however, if these "global" alterations occur pervasively or follow a spatially preferential pattern. This study presents the first network-by-network quantification of GS topography in healthy subjects and SCZ patients. We observed a nonuniform GS contribution in healthy comparison subjects, whereby sensory areas exhibited the largest GS component. In SCZ patients, we identified preferential GS representation increases across association regions, while sensory regions showed preferential reductions. GS representation in sensory versus association cortices was strongly anti-correlated in healthy subjects. This anti-correlated relationship was markedly reduced in SCZ. Such shifts in GS topography may underlie profound alterations in neural information flow in SCZ, informing development of pharmacotherapies.


Assuntos
Encéfalo/fisiopatologia , Esquizofrenia/fisiopatologia , Adulto , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Circulação Cerebrovascular/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiopatologia , Oxigênio/sangue , Descanso , Esquizofrenia/diagnóstico por imagem
16.
Proc Natl Acad Sci U S A ; 111(20): 7438-43, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24799682

RESUMO

Neuropsychiatric conditions like schizophrenia display a complex neurobiology, which has long been associated with distributed brain dysfunction. However, no investigation has tested whether schizophrenia shows alterations in global brain signal (GS), a signal derived from functional MRI and often discarded as a meaningless baseline in many studies. To evaluate GS alterations associated with schizophrenia, we studied two large chronic patient samples (n = 90, n = 71), comparing them to healthy subjects (n = 220) and patients diagnosed with bipolar disorder (n = 73). We identified and replicated increased cortical power and variance in schizophrenia, an effect predictive of symptoms yet obscured by GS removal. Voxel-wise signal variance was also increased in schizophrenia, independent of GS effects. Both findings were absent in bipolar patients, confirming diagnostic specificity. Biologically informed computational modeling of shared and nonshared signal propagation through the brain suggests that these findings may be explained by altered net strength of overall brain connectivity in schizophrenia.


Assuntos
Transtorno Bipolar/fisiopatologia , Mapeamento Encefálico/métodos , Encéfalo/fisiopatologia , Esquizofrenia/fisiopatologia , Adulto , Estudos de Casos e Controles , Simulação por Computador , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Oxigênio/sangue
17.
J Neurosci ; 35(1): 267-86, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25568120

RESUMO

Strong evidence implicates prefrontal cortex (PFC) as a major source of functional impairment in severe mental illness such as schizophrenia. Numerous schizophrenia studies report deficits in PFC structure, activation, and functional connectivity in patients with chronic illness, suggesting that deficient PFC functional connectivity occurs in this disorder. However, the PFC functional connectivity patterns during illness onset and its longitudinal progression remain uncharacterized. Emerging evidence suggests that early-course schizophrenia involves increased PFC glutamate, which might elevate PFC functional connectivity. To test this hypothesis, we examined 129 non-medicated, human subjects diagnosed with early-course schizophrenia and 106 matched healthy human subjects using both whole-brain data-driven and hypothesis-driven PFC analyses of resting-state fMRI. We identified increased PFC connectivity in early-course patients, predictive of symptoms and diagnostic classification, but less evidence for "hypoconnectivity." At the whole-brain level, we observed "hyperconnectivity" around areas centered on the default system, with modest overlap with PFC-specific effects. The PFC hyperconnectivity normalized for a subset of the sample followed longitudinally (n = 25), which also predicted immediate symptom improvement. Biologically informed computational modeling implicates altered overall connection strength in schizophrenia. The initial hyperconnectivity, which may decrease longitudinally, could have prognostic and therapeutic implications.


Assuntos
Rede Nervosa/fisiologia , Córtex Pré-Frontal/fisiologia , Esquizofrenia/diagnóstico , Esquizofrenia/fisiopatologia , Psicologia do Esquizofrênico , Adolescente , Adulto , Diagnóstico Precoce , Feminino , Seguimentos , Humanos , Estudos Longitudinais , Masculino , Adulto Jovem
18.
Cereb Cortex ; 24(4): 859-72, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23203979

RESUMO

Excitation-inhibition balance (E/I balance) is a fundamental property of cortical microcircuitry. Disruption of E/I balance in prefrontal cortex is hypothesized to underlie cognitive deficits observed in neuropsychiatric illnesses such as schizophrenia. To elucidate the link between these phenomena, we incorporated synaptic disinhibition, via N-methyl-D-aspartate receptor perturbation on interneurons, into a network model of spatial working memory (WM). At the neural level, disinhibition broadens the tuning of WM-related, stimulus-selective persistent activity patterns. The model predicts that this change at the neural level leads to 2 primary behavioral deficits: 1) increased behavioral variability that degrades the precision of stored information and 2) decreased ability to filter out distractors during WM maintenance. We specifically tested the main model prediction, broadened WM representation under disinhibition, using behavioral data from human subjects performing a spatial WM task combined with ketamine infusion, a pharmacological model of schizophrenia hypothesized to induce disinhibition. Ketamine increased errors in a pattern predicted by the model. Finally, as proof-of-principle, we demonstrate that WM deteriorations in the model can be ameliorated by compensations that restore E/I balance. Our findings identify specific ways by which cortical disinhibition affects WM, suggesting new experimental designs for probing the brain mechanisms of WM deficits in schizophrenia.


Assuntos
Córtex Cerebral/citologia , Transtornos da Memória/patologia , Memória de Curto Prazo , Modelos Neurológicos , Rede Nervosa/fisiopatologia , Neurônios/fisiologia , Transtornos Cognitivos , Simulação por Computador , Humanos , Receptores de N-Metil-D-Aspartato/metabolismo
19.
Cereb Cortex ; 24(12): 3116-30, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23825317

RESUMO

Schizophrenia is a devastating neuropsychiatric syndrome associated with distributed brain dysconnectivity that may involve large-scale thalamo-cortical systems. Incomplete characterization of thalamic connectivity in schizophrenia limits our understanding of its relationship to symptoms and to diagnoses with shared clinical presentation, such as bipolar illness, which may exist on a spectrum. Using resting-state functional magnetic resonance imaging, we characterized thalamic connectivity in 90 schizophrenia patients versus 90 matched controls via: (1) Subject-specific anatomically defined thalamic seeds; (2) anatomical and data-driven clustering to assay within-thalamus dysconnectivity; and (3) machine learning to classify diagnostic membership via thalamic connectivity for schizophrenia and for 47 bipolar patients and 47 matched controls. Schizophrenia analyses revealed functionally related disturbances: Thalamic over-connectivity with bilateral sensory-motor cortices, which predicted symptoms, but thalamic under-connectivity with prefrontal-striatal-cerebellar regions relative to controls, possibly reflective of sensory gating and top-down control disturbances. Clustering revealed that this dysconnectivity was prominent for thalamic nuclei densely connected with the prefrontal cortex. Classification and cross-diagnostic results suggest that thalamic dysconnectivity may be a neural marker for disturbances across diagnoses. Present findings, using one of the largest schizophrenia and bipolar neuroimaging samples to date, inform basic understanding of large-scale thalamo-cortical systems and provide vital clues about the complex nature of its disturbances in severe mental illness.


Assuntos
Transtorno Bipolar/patologia , Córtex Cerebral/patologia , Vias Neurais/patologia , Esquizofrenia/patologia , Tálamo/patologia , Adolescente , Adulto , Estudos de Casos e Controles , Córtex Cerebral/irrigação sanguínea , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/irrigação sanguínea , Oxigênio/sangue , Escalas de Graduação Psiquiátrica , Tálamo/irrigação sanguínea , Adulto Jovem
20.
Proc Natl Acad Sci U S A ; 109(41): 16720-5, 2012 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-23012427

RESUMO

Glutamatergic neurotransmission mediated by N-methyl-d-aspartate (NMDA) receptors is vital for the cortical computations underlying cognition and might be disrupted in severe neuropsychiatric illnesses such as schizophrenia. Studies on this topic have been limited to processes in local circuits; however, cognition involves large-scale brain systems with multiple interacting regions. A prominent feature of the human brain's global architecture is the anticorrelation of default-mode vs. task-positive systems. Here, we show that administration of an NMDA glutamate receptor antagonist, ketamine, disrupted the reciprocal relationship between these systems in terms of task-dependent activation and connectivity during performance of delayed working memory. Furthermore, the degree of this disruption predicted task performance and transiently evoked symptoms characteristic of schizophrenia. We offer a parsimonious hypothesis for this disruption via biophysically realistic computational modeling, namely cortical disinhibition. Together, the present findings establish links between glutamate's role in the organization of large-scale anticorrelated neural systems, cognition, and symptoms associated with schizophrenia in humans.


Assuntos
Encéfalo/fisiologia , Cognição/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Esquizofrenia/fisiopatologia , Adulto , Algoritmos , Encéfalo/efeitos dos fármacos , Cognição/efeitos dos fármacos , Método Duplo-Cego , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Humanos , Infusões Intravenosas , Ketamina/administração & dosagem , Ketamina/farmacologia , Imageamento por Ressonância Magnética , Masculino , Memória/efeitos dos fármacos , Memória/fisiologia , Modelos Neurológicos , Reconhecimento Visual de Modelos/efeitos dos fármacos , Reconhecimento Visual de Modelos/fisiologia , Desempenho Psicomotor/efeitos dos fármacos , Desempenho Psicomotor/fisiologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa