RESUMO
Immune checkpoint blockade has revolutionized the field of oncology, inducing durable anti-tumour immunity in solid tumours. In patients with advanced prostate cancer, immunotherapy treatments have largely failed1-5. Androgen deprivation therapy is classically administered in these patients to inhibit tumour cell growth, and we postulated that this therapy also affects tumour-associated T cells. Here we demonstrate that androgen receptor (AR) blockade sensitizes tumour-bearing hosts to effective checkpoint blockade by directly enhancing CD8 T cell function. Inhibition of AR activity in CD8 T cells prevented T cell exhaustion and improved responsiveness to PD-1 targeted therapy via increased IFNγ expression. AR bound directly to Ifng and eviction of AR with a small molecule significantly increased cytokine production in CD8 T cells. Together, our findings establish that T cell intrinsic AR activity represses IFNγ expression and represents a novel mechanism of immunotherapy resistance.
Assuntos
Linfócitos T CD8-Positivos , Imunoterapia , Neoplasias da Próstata , Receptores Androgênicos , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/uso terapêutico , Linfócitos T CD8-Positivos/imunologia , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Interferon gama , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Falha de TratamentoRESUMO
The therapeutic utility of siRNAs is limited by the requirement for complex formulations to deliver them to tissues. If potent single-stranded RNAs could be identified, they would provide a simpler path to pharmacological agents. Here, we describe single-stranded siRNAs (ss-siRNAs) that silence gene expression in animals absent lipid formulation. Effective ss-siRNAs were identified by iterative design by determining structure-activity relationships correlating chemically modified single strands and Argonaute 2 (AGO2) activities, potency in cells, nuclease stability, and pharmacokinetics. We find that the passenger strand is not necessary for potent gene silencing. The guide-strand activity requires AGO2, demonstrating action through the RNAi pathway. ss-siRNA action requires a 5' phosphate to achieve activity in vivo, and we developed a metabolically stable 5'-(E)-vinylphosphonate (5'-VP) with conformation and sterioelectronic properties similar to the natural phosphate. Identification of potent ss-siRNAs offers an additional option for RNAi therapeutics and an alternate perspective on RNAi mechanism.
Assuntos
Proteínas Argonautas/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Animais , Sequência de Bases , Células Cultivadas , Células HeLa , Hepatócitos/metabolismo , Humanos , Metabolismo dos Lipídeos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Organofosfonatos/metabolismo , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , Complexo de Inativação Induzido por RNA/metabolismo , Compostos de Vinila/metabolismoRESUMO
CMV, a ubiquitous herpesvirus, elicits an extraordinarily large T cell response that is sustained or increases over time, a phenomenon termed 'memory inflation.' Remarkably, even latent, non-productive infection can drive memory inflation. Despite intense research on this phenomenon, the infected cell type(s) involved are unknown. To identify the responsible cell type(s), we designed a Cre-lox murine CMV (MCMV) system, where a spread-deficient (ΔgL) virus expresses recombinant SIINFEKL only in Cre+ host cells. We found that latent infection of endothelial cells (ECs), but not dendritic cells (DCs) or hepatocytes, was sufficient to drive CD8 T cell memory inflation. Infection of Lyve-1-Cre and Prox1-CreERT2 mice revealed that amongst EC subsets, infection of lymphatic ECs was sufficient. Genetic ablation of ß2m on lymphatic ECs did not prevent inflation, suggesting another unidentified cell type can also present antigen to CD8 T cells during latency. This novel system definitively shows that antigen presentation by lymphatic ECs drives robust CD8 T cell memory inflation.
Assuntos
Infecções por Citomegalovirus , Infecção Latente , Muromegalovirus , Animais , Camundongos , Células Endoteliais , Linfócitos T CD8-Positivos , Antígenos , Memória ImunológicaRESUMO
Rationale: Accelerated biological aging has been implicated in the development of interstitial lung disease (ILD) and other diseases of aging but remains poorly understood. Objectives: To identify plasma proteins that mediate the relationship between chronological age and survival association in patients with ILD. Methods: Causal mediation analysis was performed to identify plasma proteins that mediated the chronological age-survival relationship in an idiopathic pulmonary fibrosis discovery cohort. Proteins mediating this relationship after adjustment for false discovery were advanced for testing in an independent ILD validation cohort and explored in a chronic obstructive pulmonary disease cohort. A proteomic-based measure of biological age was constructed and survival analysis performed, assessing the impact of biological age and peripheral blood telomere length on the chronological age-survival relationship. Measurements and Main Results: Twenty-two proteins mediated the chronological age-survival relationship after adjustment for false discovery in the idiopathic pulmonary fibrosis discovery cohort (n = 874), with 19 remaining significant mediators of this relationship in the ILD validation cohort (n = 983) and one mediating this relationship in the chronic obstructive pulmonary disease cohort. Latent transforming growth factor-ß binding protein 2 and ectodysplasin A2 receptor showed the strongest mediation across cohorts. A proteomic measure of biological age completely attenuated the chronological age-survival association and better discriminated survival than chronological age. Results were robust to adjustment for peripheral blood telomere length, which did not mediate the chronological age-survival relationship. Conclusions: Molecular measures of aging completely mediate the relationship between chronological age and survival, suggesting that chronological age has no direct effect on ILD survival.
Assuntos
Envelhecimento , Fibrose Pulmonar Idiopática , Humanos , Masculino , Feminino , Idoso , Envelhecimento/fisiologia , Pessoa de Meia-Idade , Fibrose Pulmonar Idiopática/mortalidade , Fibrose Pulmonar Idiopática/fisiopatologia , Fibrose Pulmonar Idiopática/sangue , Análise de Mediação , Estudos de Coortes , Análise de Sobrevida , Proteômica , Idoso de 80 Anos ou mais , Proteínas Sanguíneas/metabolismoRESUMO
Rationale: Distinguishing connective tissue disease-associated interstitial lung disease (CTD-ILD) from idiopathic pulmonary fibrosis (IPF) can be clinically challenging. Objectives: To identify proteins that separate and classify patients with CTD-ILD and those with IPF. Methods: Four registries with 1,247 patients with IPF and 352 patients with CTD-ILD were included in analyses. Plasma samples were subjected to high-throughput proteomics assays. Protein features were prioritized using recursive feature elimination to construct a proteomic classifier. Multiple machine learning models, including support vector machine, LASSO (least absolute shrinkage and selection operator) regression, random forest, and imbalanced Random Forest, were trained and tested in independent cohorts. The validated models were used to classify each case iteratively in external datasets. Measurements and Main Results: A classifier with 37 proteins (proteomic classifier 37 [PC37]) was enriched in the biological process of bronchiole development and smooth muscle proliferation and immune responses. Four machine learning models used PC37 with sex and age score to generate continuous classification values. Receiver operating characteristic curve analyses of these scores demonstrated consistent areas under the curve of 0.85-0.90 in the test cohort and 0.94-0.96 in the single-sample dataset. Binary classification demonstrated 78.6-80.4% sensitivity and 76-84.4% specificity in the test cohort and 93.5-96.1% sensitivity and 69.5-77.6% specificity in the single-sample classification dataset. Composite analysis of all machine learning models confirmed 78.2% (194 of 248) accuracy in the test cohort and 82.9% (208 of 251) in the single-sample classification dataset. Conclusions: Multiple machine learning models trained with large cohort proteomic datasets consistently distinguished CTD-ILD from IPF. Many of the identified proteins are involved in immune pathways. We further developed a novel approach for single-sample classification, which could facilitate honing the differential diagnosis of ILD in challenging cases and improve clinical decision making.
Assuntos
Doenças Pulmonares Intersticiais , Aprendizado de Máquina , Proteômica , Humanos , Doenças Pulmonares Intersticiais/sangue , Doenças Pulmonares Intersticiais/diagnóstico , Feminino , Masculino , Proteômica/métodos , Pessoa de Meia-Idade , Idoso , Fibrose Pulmonar Idiopática/sangue , Fibrose Pulmonar Idiopática/diagnóstico , Diagnóstico Diferencial , Doenças do Tecido Conjuntivo/sangue , Doenças do Tecido Conjuntivo/diagnóstico , Biomarcadores/sangueRESUMO
BACKGROUND: Chronic obstructive pulmonary disease (COPD) exhibits considerable progression heterogeneity. We hypothesized that elastic principal graph analysis (EPGA) would identify distinct clinical phenotypes and their longitudinal relationships. METHODS: Cross-sectional data from 8,972 tobacco-exposed COPDGene participants, with and without COPD, were used to train a model with EPGA, using thirty clinical, physiologic and CT features. Principal component analysis (PCA) was used to reduce data dimensionality to six principal components. An elastic principal tree was fitted to the reduced space. 4,585 participants from COPDGene Phase 2 were used to test longitudinal trajectories. 2,652 participants from SPIROMICS tested external reproducibility. RESULTS: Our analysis used cross-sectional data to create an elastic principal tree, where the concept of time is represented by distance on the tree. Six clinically distinct tree segments were identified that differed by lung function, symptoms, and CT features: 1) Subclinical (SC); 2) Parenchymal Abnormality (PA); 3) Chronic Bronchitis (CB); 4) Emphysema Male (EM); 5) Emphysema Female (EF); and 6) Severe Airways (SA) disease. Cross-sectional SPIROMICS data confirmed similar groupings. 5-year data from COPDGene mapped longitudinal changes onto the tree. 29% of patients changed segment during follow-up; longitudinal trajectories confirmed a net flow of patients along the tree, from SC towards Emphysema, although alternative trajectories were noted, through airway disease predominant phenotypes, CB and SA. CONCLUSION: This novel analytic methodology provides an approach to defining longitudinal phenotypic trajectories using cross sectional data. These insights are clinically relevant and could facilitate precision therapy and future trials to modify disease progression.
RESUMO
Maintaining normal calcium and phosphate homeostasis is essential for optimal cellular, metabolic, and organ function. Parathyroid hormone, fibroblast growth factor 23, and 1,25-dihydroxyvitamin D regulate calcium and phosphate homeostasis via multiple interlinked feedback loops, receptors, ion channels, and transporters. Following an initial overview of the stimuli and effects of the different hormonal regulators, this installment of AJKD's Core Curriculum in Nephrology reviews the physiology and pathophysiology of calcium and phosphate disorders through the lens of a series of illustrative cases. The cases span clinical conundrums commonly encountered by nephrologists in their daily clinical practice and other less common disorders. Some of the cases present in the outpatient clinic setting and others in the inpatient hospital setting. Patients with normal kidney function, chronic kidney disease, kidney failure, and acute kidney injury are all represented. Some of the disorders are iatrogenic, and some are due to native disease. All demonstrate key aspects of pathophysiology that are essential knowledge for nephrology clinicians of all career stages.
Assuntos
Cálcio , Insuficiência Renal Crônica , Humanos , Cálcio/metabolismo , Fosfatos/metabolismo , Hormônio Paratireóideo/metabolismo , Insuficiência Renal Crônica/terapia , Currículo , Fatores de Crescimento de FibroblastosRESUMO
BACKGROUND: Small airways disease (SAD) is a major cause of airflow obstruction in COPD patients and has been identified as a precursor to emphysema. Although the amount of SAD in the lungs can be quantified using our Parametric Response Mapping (PRM) approach, the full breadth of this readout as a measure of emphysema and COPD progression has yet to be explored. We evaluated topological features of PRM-derived normal parenchyma and SAD as surrogates of emphysema and predictors of spirometric decline. METHODS: PRM metrics of normal lung (PRMNorm) and functional SAD (PRMfSAD) were generated from CT scans collected as part of the COPDGene study (n = 8956). Volume density (V) and Euler-Poincaré Characteristic (χ) image maps, measures of the extent and coalescence of pocket formations (i.e., topologies), respectively, were determined for both PRMNorm and PRMfSAD. Association with COPD severity, emphysema, and spirometric measures were assessed via multivariable regression models. Readouts were evaluated as inputs for predicting FEV1 decline using a machine learning model. RESULTS: Multivariable cross-sectional analysis of COPD subjects showed that V and χ measures for PRMfSAD and PRMNorm were independently associated with the amount of emphysema. Readouts χfSAD (ß of 0.106, p < 0.001) and VfSAD (ß of 0.065, p = 0.004) were also independently associated with FEV1% predicted. The machine learning model using PRM topologies as inputs predicted FEV1 decline over five years with an AUC of 0.69. CONCLUSIONS: We demonstrated that V and χ of fSAD and Norm have independent value when associated with lung function and emphysema. In addition, we demonstrated that these readouts are predictive of spirometric decline when used as inputs in a ML model. Our topological PRM approach using PRMfSAD and PRMNorm may show promise as an early indicator of emphysema onset and COPD progression.
Assuntos
Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Estudos Transversais , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Volume Expiratório Forçado/fisiologiaRESUMO
This research introduces a multivariate τ $$ \tau $$ -inflated beta regression ( τ $$ \tau $$ -IBR) modeling approach for the analysis of censored recurrent event data that is particularly useful when there is a mixture of (a) individuals who are generally less susceptible to recurrent events and (b) heterogeneity in duration of event-free periods amongst those who experience events. The modeling approach is applied to a restructured version of the recurrent event data that consists of censored longitudinal times-to-first-event in τ $$ \tau $$ length follow-up windows that potentially overlap. Multiple imputation (MI) and expectation-solution (ES) approaches appropriate for censored data are developed as part of the model fitting process. A suite of useful analysis outputs are provided from the τ $$ \tau $$ -IBR model that include parameter estimates to help interpret the (a) and (b) mixture of event times in the data, estimates of mean τ $$ \tau $$ -restricted event-free duration in a τ $$ \tau $$ -length follow-up window based on a patient's covariate profile, and heat maps of raw τ $$ \tau $$ -restricted event-free durations observed in the data with censored observations augmented via averages across MI datasets. Simulations indicate good statistical performance of the proposed τ $$ \tau $$ -IBR approach to modeling censored recurrent event data. An example is given based on the Azithromycin for Prevention of COPD Exacerbations Trial.
Assuntos
Azitromicina , Doença Pulmonar Obstrutiva Crônica , HumanosRESUMO
OBJECTIVE: Reward and punishment sensitivity are known to be altered in anorexia nervosa (AN). Most research has examined these constructs separately although motivated behavior is influenced by considering both the potential for reward and risk of punishment. The present study sought to compare the relative balance of reward and punishment sensitivity in AN versus healthy controls (HCs) and examine whether motivational bias is associated with AN symptoms and treatment outcomes. METHODS: Adolescents and adults with AN (n = 262) in a partial hospitalization program completed the Eating Disorders Examination Questionnaire (EDE-Q), Behavioral Inhibition System/Behavioral Activation System (BIS/BAS) scales, and Sensitivity to Punishment/Sensitivity to Reward Questionnaire (SPSRQ) at admission and discharge. HCs (HC; n = 90) completed the BIS/BAS and SPSRQ. Motivational Bias Scores were calculated to reflect the dominance of reward versus punishment sensitivity. RESULTS: Individuals with AN demonstrated significantly greater bias toward punishment sensitivity than HC. In AN, a bias toward punishment was associated with higher EDE-Q Global score at admission. Change in motivational bias during treatment predicted EDE-Q Global scores, but not BMI, at discharge, with greater increases in reward sensitivity or greater decreases in punishment sensitivity during treatment predicting lower eating pathology. Similar findings were observed using the BIS/BAS and SPSRQ. DISCUSSION: Change in motivational bias during treatment is associated with improved outcomes in AN. However, it appears that much of the change in motivational bias can be attributed to changes in punishment sensitivity, rather than reward sensitivity. Future research should examine the mechanisms underlying punishment sensitivity decreases during treatment. PUBLIC SIGNIFICANCE: Sensitivity to reward and punishment may be important treatment targets for individuals with anorexia nervosa (AN). To date, most research has considered reward and punishment sensitivity separately, rather than examining their relationship to each other. We found that the balance of reward and punishment sensitivity (i.e., motivational bias) differs between healthy controls and those with AN and that this bias is associated with eating disorder symptoms and treatment outcome.
Assuntos
Anorexia Nervosa , Adulto , Adolescente , Humanos , Anorexia Nervosa/terapia , Inquéritos e Questionários , Recompensa , Motivação , PuniçãoRESUMO
RATIONALE: Idiopathic pulmonary fibrosis (IPF) causes progressive lung scarring and high mortality. Reliable and accurate prognostic biomarkers are urgently needed. OBJECTIVE: To identify and validate circulating protein biomarkers of IPF survival. METHODS: High-throughput proteomic data were generated using prospectively collected plasma samples from patients with IPF from the Pulmonary Fibrosis Foundation Patient Registry (discovery cohort) and the Universities of California-Davis, Chicago, and Virginia (validation cohort). Proteins associated with three-year transplant-free survival (TFS) were identified using multivariable Cox proportional hazards regression. Those associated with TFS after adjustment for false discovery in the discovery cohort were advanced for testing in the validation cohort, with proteins maintaining TFS association with consistent effect direction considered validated. After combining cohorts, functional analyses were performed, and machine learning used to derive a proteomic signature of TFS. MAIN RESULTS: Of 2921 proteins tested in the discovery cohort (n=871), 231 were associated with differential TFS. Of these, 140 maintained TFS association with consistent effect direction in the validation cohort (n=355). After combining cohorts, validated proteins with strongest TFS association were latent-transforming growth factor beta-binding protein 2 (HR 2.43, 95% CI 2.09-2.82), collagen alpha-1(XXIV) chain (HR 2.21; 95% CI 1.86-2.39) and keratin 19 (HR 1.60; 95% CI 1.47-1.74). In decision curve analysis, a proteomic signature of TFS outperformed a similarly derived clinical prediction model. CONCLUSIONS: In largest proteomic investigation of IPF outcomes performed to date, we identified and validated 140 protein biomarkers of TFS. These results shed important light on potential drivers of IPF progression.
RESUMO
Rationale: Cigarette smoking contributes to the risk of death through different mechanisms. Objectives: To determine how causes of and clinical features associated with death vary in tobacco cigarette users by lung function impairment. Methods: We stratified current and former tobacco cigarette users enrolled in Genetic Epidemiology of Chronic Obstructive Pulmonary Disease (COPDGene) into normal spirometry, PRISm (Preserved Ratio Impaired Spirometry), Global Initiative for Chronic Obstructive Lung Disease (GOLD) 1-2 COPD, and GOLD 3-4 COPD. Deaths were identified via longitudinal follow-up and Social Security Death Index search. Causes of death were adjudicated after a review of death certificates, medical records, and next-of-kin interviews. We tested associations between baseline clinical variables and all-cause mortality using multivariable Cox proportional hazards models. Measurements and Main Results: Over a 10.1-year median follow-up, 2,200 deaths occurred among 10,132 participants (age 59.5 ± 9.0 yr; 46.6% women). Death from cardiovascular disease was most frequent in PRISm (31% of deaths). Lung cancer deaths were most frequent in GOLD 1-2 (18% of deaths vs. 9-11% in other groups). Respiratory deaths outpaced competing causes of death in GOLD 3-4, particularly when BODE index ⩾7. St. George's Respiratory Questionnaire score ⩾25 was associated with higher mortality in all groups: Hazard ratio (HR), 1.48 (1.20-1.84) normal spirometry; HR, 1.40 (1.05-1.87) PRISm; HR, 1.80 (1.49-2.17) GOLD 1-2; HR, 1.65 (1.26-2.17) GOLD 3-4. History of respiratory exacerbations was associated with higher mortality in GOLD 1-2 and GOLD 3-4, quantitative emphysema in GOLD 1-2, and airway wall thickness in PRISm and GOLD 3-4. Conclusions: Leading causes of death vary by lung function impairment in tobacco cigarette users. Worse respiratory-related quality of life is associated with all-cause mortality regardless of lung function.
Assuntos
Doença Pulmonar Obstrutiva Crônica , Produtos do Tabaco , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Volume Expiratório Forçado , Pulmão , Qualidade de Vida , EspirometriaRESUMO
While the growth of global markets in health-related services may have significant consequences for healthcare provisioning and training, it has received relatively little attention from the social sciences. This article examines UK-India, and specifically England-India, exports in health worker education and training as one such global market, drawing on sociological scholarship on moral economies to understand how trading in this field is constructed and legitimated by the individuals and organisations involved, what tensions evolve, and what is at stake in them. We employ a qualitative mixed methods approach using publicly available materials on existing UK-India collaborations and primary data from interviews with key stakeholders in India and the UK, including government departments, arms-length bodies, NHS Trusts, trade associations and private providers. Our analysis illustrates the key discursive strategies used to legitimate engagement in these markets, and the complex and contested moral economies unfolding between and across these stakeholders and contexts. Not least, we demonstrate the conflicting moral sentiments and the boundary work required to realise commodification. Situating cross-border trade in health worker education and training in a moral economy framework thus illuminates the social context and moral worlds in which this evolving trade is embedded.
Assuntos
Atenção à Saúde , Pessoal de Saúde , Humanos , Inglaterra , Princípios Morais , ÍndiaRESUMO
Second mitochondria-derived activator of caspases (SMAC) mimetics are small molecule drugs that mimic the activity of the endogenous SMAC protein. SMAC and SMAC mimetics antagonize inhibitors of apoptosis proteins (IAPs), thereby sensitizing cells to apoptosis. As such, SMAC mimetics are being tested in numerous clinical trials for cancer. In addition to their direct anti-cancer effect, it has been suggested that SMAC mimetics may activate T cells, thereby promoting anti-tumor immunity. Here, we tested the effect of three clinically relevant SMAC mimetics on activation of primary human T cells. As previously reported, SMAC mimetics killed tumor cells and activated non-canonical NF-κB in T cells at clinically relevant doses. Surprisingly, none of the SMAC mimetics augmented T cell responses. Rather, SMAC mimetics impaired T cell proliferation and decreased the proportion of IFNγ/TNFα double-producing T cells. These results question the assumption that SMAC mimetics are likely to boost anti-tumor immunity in cancer patients.
Assuntos
Caspases , Neoplasias , Humanos , Caspases/farmacologia , Caspases/uso terapêutico , Proteínas Inibidoras de Apoptose/metabolismo , Proteínas Inibidoras de Apoptose/farmacologia , Proteínas Inibidoras de Apoptose/uso terapêutico , Citocinas , Neoplasias/tratamento farmacológico , Apoptose , Mitocôndrias/metabolismo , Proliferação de Células , Proteínas Mitocondriais/metabolismo , Linhagem Celular TumoralRESUMO
Importance: Chronic obstructive pulmonary disease (COPD) is underdiagnosed in primary care. Objective: To evaluate the operating characteristics of the CAPTURE (COPD Assessment in Primary Care To Identify Undiagnosed Respiratory Disease and Exacerbation Risk) screening tool for identifying US primary care patients with undiagnosed, clinically significant COPD. Design, Setting, and Participants: In this cross-sectional study, 4679 primary care patients aged 45 years to 80 years without a prior COPD diagnosis were enrolled by 7 primary care practice-based research networks across the US between October 12, 2018, and April 1, 2022. The CAPTURE questionnaire responses, peak expiratory flow rate, COPD Assessment Test scores, history of acute respiratory illnesses, demographics, and spirometry results were collected. Exposure: Undiagnosed COPD. Main Outcomes and Measures: The primary outcome was the CAPTURE tool's sensitivity and specificity for identifying patients with undiagnosed, clinically significant COPD. The secondary outcomes included the analyses of varying thresholds for defining a positive screening result for clinically significant COPD. A positive screening result was defined as (1) a CAPTURE questionnaire score of 5 or 6 or (2) a questionnaire score of 2, 3, or 4 together with a peak expiratory flow rate of less than 250 L/min for females or less than 350 L/min for males. Clinically significant COPD was defined as spirometry-defined COPD (postbronchodilator ratio of forced expiratory volume in the first second of expiration [FEV1] to forced vital capacity [FEV1:FVC] <0.70 or prebronchodilator FEV1:FVC <0.65 if postbronchodilator spirometry was not completed) combined with either an FEV1 less than 60% of the predicted value or a self-reported history of an acute respiratory illness within the past 12 months. Results: Of the 4325 patients who had adequate data for analysis (63.0% were women; the mean age was 61.6 years [SD, 9.1 years]), 44.6% had ever smoked cigarettes, 18.3% reported a prior asthma diagnosis or use of inhaled respiratory medications, 13.2% currently smoked cigarettes, and 10.0% reported at least 1 cardiovascular comorbidity. Among the 110 patients (2.5% of 4325) with undiagnosed, clinically significant COPD, 53 had a positive screening result with a sensitivity of 48.2% (95% CI, 38.6%-57.9%) and a specificity of 88.6% (95% CI, 87.6%-89.6%). The area under the receiver operating curve for varying positive screening thresholds was 0.81 (95% CI, 0.77-0.85). Conclusions and Relevance: Within this US primary care population, the CAPTURE screening tool had a low sensitivity but a high specificity for identifying clinically significant COPD defined by presence of airflow obstruction that is of moderate severity or accompanied by a history of acute respiratory illness. Further research is needed to optimize performance of the screening tool and to understand whether its use affects clinical outcomes.
Assuntos
Programas de Rastreamento , Diagnóstico Ausente , Atenção Primária à Saúde , Doença Pulmonar Obstrutiva Crônica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Asma/tratamento farmacológico , Estudos Transversais , Volume Expiratório Forçado , Pulmão , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Capacidade Vital , Erros de Diagnóstico/prevenção & controle , Diagnóstico Ausente/prevenção & controle , Programas de Rastreamento/instrumentação , Programas de Rastreamento/métodos , Idoso , Idoso de 80 Anos ou mais , Estados Unidos , Inquéritos Epidemiológicos , EspirometriaRESUMO
Idiopathic pulmonary fibrosis (IPF) is a poorly understood, progressive lethal lung disease with no known cure. In addition to alveolar epithelial cell (AEC) injury and excessive deposition of extracellular matrix proteins, chronic inflammation is a hallmark of IPF. Literature suggests that the persistent inflammation seen in IPF primarily consists of monocytes and macrophages. Recent work demonstrates that monocyte-derived alveolar macrophages (moAMs) drive lung fibrosis, but further characterization of critical moAM cell attributes is necessary. Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is an important epidermal growth factor receptor ligand that has essential roles in angiogenesis, wound healing, keratinocyte migration, and epithelial-mesenchymal transition. Our past work has shown HB-EGF is a primary marker of profibrotic M2 macrophages, and this study seeks to characterize myeloid-derived HB-EGF and its primary mechanism of action in bleomycin-induced lung fibrosis using Hbegff/f;Lyz2Cre+ mice. Here, we show that patients with IPF and mice with pulmonary fibrosis have increased expression of HB-EGF and that lung macrophages and transitional AECs of mice with pulmonary fibrosis and humans all express HB-EGF. We also show that Hbegff/f;Lyz2Cre+ mice are protected from bleomycin-induced fibrosis and that this protection is likely multifactorial, caused by decreased CCL2-dependent monocyte migration, decreased fibroblast migration, and decreased contribution of HB-EGF from AEC sources when HB-EGF is removed under the Lyz2Cre promoter.
Assuntos
Fibrose Pulmonar Idiopática , Humanos , Camundongos , Animais , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/metabolismo , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/farmacologia , Bleomicina , Heparina , Inflamação , Fator de Crescimento Epidérmico/farmacologiaRESUMO
Nonhuman primates living in proximity to humans increase risks for sylvatic arbovirus transmission. We collected serum samples from nonhuman primates in Hlawga National Park near Yangon, Myanmar, and detected antibodies against chikungunya (33%) and Japanese encephalitis (4%) viruses. Buffer zones between primate and human communities might reduce cross-species arbovirus transmission.
Assuntos
Arbovírus , Febre de Chikungunya , Vírus Chikungunya , Animais , Humanos , Mianmar/epidemiologia , Febre de Chikungunya/epidemiologia , PrimatasRESUMO
Defective DNA repair pathways contribute to the development of chronic kidney disease (CKD) in humans. However, the molecular mechanisms underlying DNA damage-induced CKD pathogenesis are not well understood. Here, we investigated the role of tubular cell DNA damage in the pathogenesis of CKD using mice in which the DNA repair protein Fan1 was knocked out. The phenotype of these mice is orthologous to the human DNA damage syndrome, karyomegalic interstitial nephritis (KIN). Inactivation of Fan1 in kidney proximal tubule cells sensitized the kidneys to genotoxic and obstructive injury characterized by replication stress and persistent DNA damage response activity. Accumulation of DNA damage in Fan1 tubular cells induced epithelial dedifferentiation and tubular injury. Characteristic to KIN, cells with chronic DNA damage failed to complete mitosis and underwent polyploidization. In vitro and in vivo studies showed that polyploidization was caused by the overexpression of DNA replication factors CDT1 and CDC6 in FAN1 deficient cells. Mechanistically, inhibiting DNA replication with Roscovitine reduced tubular injury, blocked the development of KIN and mitigated kidney function in these Fan1 knockout mice. Thus, our data delineate a mechanistic pathway by which persistent DNA damage in the kidney tubular cells leads to kidney injury and development of CKD. Furthermore, therapeutic modulation of cell cycle activity may provide an opportunity to mitigate the DNA damage response induced CKD progression.
Assuntos
Nefrite Intersticial , Insuficiência Renal Crônica , Animais , Humanos , Camundongos , Dano ao DNA , Reparo do DNA , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Fibrose , Rim/patologia , Camundongos Knockout , Enzimas Multifuncionais/genética , Enzimas Multifuncionais/metabolismo , Nefrite Intersticial/patologia , Insuficiência Renal Crônica/etiologia , RoscovitinaRESUMO
BACKGROUND AND AIMS: The hepatic mitogen-activated protein kinase (MAPK) cascade leading to c-Jun N-terminal kinase (JNK) activation has been implicated in the pathogenesis of nonalcoholic fatty liver (NAFL)/NASH. In acute hepatotoxicity, we previously identified a pivotal role for mitochondrial SH3BP5 (SAB; SH3 homology associated BTK binding protein) as a target of JNK, which sustains its activation through promotion of reactive oxygen species production. Therefore, we assessed the role of hepatic SAB in experimental NASH and metabolic syndrome. APPROACH AND RESULTS: In mice fed high-fat, high-calorie, high-fructose (HFHC) diet, SAB expression progressively increased through a sustained JNK/activating transcription factor 2 (ATF2) activation loop. Inducible deletion of hepatic SAB markedly decreased sustained JNK activation and improved systemic energy expenditure at 8 weeks followed by decreased body fat at 16 weeks of HFHC diet. After 30 weeks, mice treated with control-antisense oligonucleotide (control-ASO) developed steatohepatitis and fibrosis, which was prevented by Sab-ASO treatment. Phosphorylated JNK (p-JNK) and phosphorylated ATF2 (p-ATF2) were markedly attenuated by Sab-ASO treatment. After 52 weeks of HFHC feeding, control N-acetylgalactosamine antisense oligonucleotide (GalNAc-Ctl-ASO) treated mice fed the HFHC diet exhibited progression of steatohepatitis and fibrosis, but GalNAc-Sab-ASO treatment from weeks 40 to 52 reversed these findings while decreasing hepatic SAB, p-ATF2, and p-JNK to chow-fed levels. CONCLUSIONS: Hepatic SAB expression increases in HFHC diet-fed mice. Deletion or knockdown of SAB inhibited sustained JNK activation and steatohepatitis, fibrosis, and systemic metabolic effects, suggesting that induction of hepatocyte Sab is an important driver of the interplay between the liver and the systemic metabolic consequences of overfeeding. In established NASH, hepatocyte-targeted GalNAc-Sab-ASO treatment reversed steatohepatitis and fibrosis.
Assuntos
Cirrose Hepática/patologia , Proteínas de Membrana/metabolismo , Síndrome Metabólica/patologia , Proteínas Mitocondriais/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Animais , Células Cultivadas , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Hepatócitos/patologia , Humanos , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/genética , Síndrome Metabólica/metabolismo , Camundongos , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/genética , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Oligonucleotídeos Antissenso/administração & dosagem , Cultura Primária de CélulasRESUMO
Rationale: Chronic lung allograft dysfunction (CLAD) results in significant morbidity after lung transplantation. Potential CLAD occurs when lung function declines to 80-90% of baseline. Better noninvasive tools to prognosticate at potential CLAD are needed. Objectives: To determine whether parametric response mapping (PRM), a computed tomography (CT) voxel-wise methodology applied to high-resolution CT scans, can identify patients at risk of progression to CLAD or death. Methods: Radiographic features and PRM-based CT metrics quantifying functional small airway disease (PRMfSAD) and parenchymal disease (PRMPD) were studied at potential CLAD (n = 61). High PRMfSAD and high PRMPD were defined as ⩾30%. Restricted mean modeling was performed to compare CLAD-free survival among groups. Measurements and Main Results: PRM metrics identified the following three unique signatures: high PRMfSAD (11.5%), high PRMPD (41%), and neither (PRMNormal; 47.5%). Patients with high PRMfSAD or PRMPD had shorter CLAD-free median survival times (0.46 yr and 0.50 yr) compared with patients with predominantly PRMNormal (2.03 yr; P = 0.004 and P = 0.007 compared with PRMfSAD and PRMPD groups, respectively). In multivariate modeling adjusting for single- versus double-lung transplant, age at transplant, body mass index at potential CLAD, and time from transplant to CT scan, PRMfSAD ⩾30% or PRMPD ⩾30% continue to be statistically significant predictors of shorter CLAD-free survival. Air trapping by radiologist interpretation was common (66%), was similar across PRM groups, and was not predictive of CLAD-free survival. Ground-glass opacities by radiologist read occurred in 16% of cases and were associated with decreased CLAD-free survival (P < 0.001). Conclusions: PRM analysis offers valuable prognostic information at potential CLAD, identifying patients most at risk of developing CLAD or death.