Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(7)2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35408995

RESUMO

We have previously shown that bilateral common carotid artery occlusion followed by reperfusion (BCCAO/R) is a model to study early hypoperfusion/reperfusion-induced changes in biomarkers of the tissue physiological response to oxidative stress and inflammation. Thus in this study, we investigate with immunochemical assays if a single dose of beta-caryophyllene (BCP), administered before the BCCAO/R, can modulate the TRPV1, BDNF, and trkB receptor in the brain cortex; the glial markers GFAP and Iba1 were also examined. Frontal and temporal-occipital cortical regions were analyzed in two groups of male rats, sham-operated and submitted to BCCAO/R. Six hours before surgery, one group was gavage fed a dose of BCP (40 mg/per rat in 300 µL of sunflower oil), the other was pre-treated with the vehicle alone. Western blot analysis showed that, in the frontal cortex of vehicle-treated rats, the BCCAO/R caused a TRPV1 decrease, an increment of trkB and GFAP, no change in BDNF and Iba1. The BCP treatment caused a decrease of BDNF and an increase of trkB levels in both sham and BCCAO/R conditions while inducing opposite changes in the case of TRPV1, whose levels became higher in BCCAO/R and lower in sham conditions. Present results highlight the role of BCP in modulating early events of the cerebral inflammation triggered by the BCCAO/R through the regulation of TRPV1 and the BDNF-trkB system.


Assuntos
Isquemia Encefálica , Traumatismo por Reperfusão , Animais , Anti-Inflamatórios/uso terapêutico , Isquemia Encefálica/tratamento farmacológico , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Córtex Cerebral/metabolismo , Inflamação/tratamento farmacológico , Masculino , Sesquiterpenos Policíclicos , Ratos , Ratos Wistar , Receptor trkB , Reperfusão , Traumatismo por Reperfusão/tratamento farmacológico , Canais de Cátion TRPV
2.
Int J Mol Sci ; 24(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36614161

RESUMO

Fenofibrate (FBR), an oral medication used to treat dyslipidemia, is a ligand of the peroxisome proliferator-activated receptor α (PPARα), a nuclear receptor that regulates the expression of metabolic genes able to control lipid metabolism and food intake. PPARα natural ligands include fatty acids (FA) and FA derivatives such as palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), known to have anti-inflammatory and anorexigenic activities, respectively. We investigated changes in the FA profile and FA derivatives by HPLC and LC-MS in male C57BL/6J mice fed a standard diet with or without 0.2% fenofibrate (0.2% FBR) for 21 days. Induction of PPARα by 0.2% FBR reduced weight gain, food intake, feed efficiency, and liver lipids and induced a profound change in FA metabolism mediated by parallel enhanced mitochondrial and peroxisomal ß-oxidation. The former effects led to a steep reduction of essential FA, particularly 18:3n3, with a consequent decrease of the n3-highly unsaturated fatty acids (HUFA) score; the latter effect led to an increase of 16:1n7 and 18:1n9, suggesting enhanced hepatic de novo lipogenesis with increased levels of hepatic PEA and OEA, which may activate a positive feedback and further sustain reductions of body weight, hepatic lipids and feed efficiency.


Assuntos
Ácidos Graxos , Fenofibrato , PPAR alfa , Animais , Masculino , Camundongos , Endocanabinoides/metabolismo , Ácidos Graxos/metabolismo , Fenofibrato/farmacologia , Fígado/metabolismo , Camundongos Endogâmicos C57BL , PPAR alfa/agonistas
3.
FASEB J ; 34(1): 350-364, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914699

RESUMO

Peroxisome proliferator-activated receptor (PPAR)-α activation controls hepatic lipid homeostasis, stimulating fatty acid oxidation, and adapting the metabolic response to lipid overload and storage. Here, we investigate the effect of palmitoylethanolamide (PEA), an endogenous PPAR-α ligand, in counteracting hepatic metabolic inflexibility and mitochondrial dysfunction induced by high-fat diet (HFD) in mice. Long-term PEA administration (30 mg/kg/die per os) in HFD mice limited hepatic lipid accumulation, increased energy expenditure, and markedly reduced insulin resistance. In isolated liver mitochondria, we have demonstrated PEA capability to modulate mitochondrial oxidative capacity and energy efficiency, leading to the reduction of intracellular lipid accumulation and oxidative stress. Moreover, we have evaluated the effect of PEA on mitochondrial bioenergetics of palmitate-challenged HepG2 cells, using Seahorse analyzer. In vitro data showed that PEA recovered mitochondrial dysfunction and reduced lipid accumulation in insulin-resistant HepG2 cells, increasing fatty acid oxidation. Mechanistic studies showed that PEA effect on lipid metabolism was limited by AMP-activated protein kinase (AMPK) inhibition, providing evidence for a pivotal role of AMPK in PEA-induced adaptive metabolic setting. All these findings identify PEA as a modulator of hepatic lipid and glucose homeostasis, limiting metabolic inflexibility induced by nutrient overload.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético/efeitos dos fármacos , Etanolaminas/farmacologia , Fígado/metabolismo , Mitocôndrias/metabolismo , Obesidade/tratamento farmacológico , Ácidos Palmíticos/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Amidas , Animais , Células Hep G2 , Humanos , Insulina/metabolismo , Resistência à Insulina , Metabolismo dos Lipídeos , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/patologia , PPAR alfa/metabolismo
4.
Nutr Neurosci ; 22(3): 207-214, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28847225

RESUMO

OBJECTIVES: Conjugated linoleic acid (CLA) isomers have been shown to possess anti-inflammatory activity in the central nervous system. In this study, we aimed to evaluate whether modulation of the fatty acid profile by the CLA isomers c9,t11 or t10,c12CLA was associated with changes in the expression of pro-inflammatory molecules in human astrocytes. METHODS: Cultured astrocytes were treated for 6 days with 100 µM fatty acids (c9,t11CLA or t10,c12CLA or oleic acid). Following the treatment, the fatty acid profile of the cell and pro-inflammatory molecule expression were assessed. RESULTS: Only the t10,c12CLA isomer induced a significant decrease in arachidonic acid and increased the ratio of docosahexaenoic acid/eicosapentaenoic acid, which constitutes indirect evidence of peroxisome proliferator-activated receptor alpha activation. Inhibition of tumour necrosis factor-α, interleukin-1ß, and RANTES expression was observed in astrocytes treated with c9,t11CLA and t10,c12CLA. DISCUSSION: Current data demonstrate that CLA isomers, particularly t10,c12, may affect neuroinflammation by reducing the pro-inflammatory molecules in cultured astrocytes, suggesting a potential nutritional role of CLA isomers in modulating the astrocyte inflammatory response.


Assuntos
Anti-Inflamatórios/administração & dosagem , Astrócitos/metabolismo , Mediadores da Inflamação/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Ácidos Linoleicos Conjugados/administração & dosagem , Biomarcadores/metabolismo , Células Cultivadas , Regulação para Baixo , Ácidos Graxos/administração & dosagem , Ácidos Graxos/metabolismo , Humanos , RNA Mensageiro/metabolismo
5.
Lipids Health Dis ; 17(1): 23, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29402275

RESUMO

BACKGROUND: The transient global cerebral hypoperfusion/reperfusion achieved by induction of Bilateral Common Carotid Artery Occlusion followed by Reperfusion (BCCAO/R) has been shown to stimulate early molecular changes that can be easily traced in brain tissue and plasma, and that are indicative of the tissue physiological response to the reperfusion-induced oxidative stress and inflammation. The aim of the present study is to probe the possibility to prevent the molecular changes induced by the BCCAO/R with dietary natural compounds known to possess anti-inflammatory activity, such as the phytocannabinoid beta-caryophyllene (BCP). METHODS: Two groups of adult Wistar rats were used, sham-operated and submitted to BCCAO/R. In both groups, 6 h before surgery, half of the rats were gavage-fed with a single dose of BCP (40 mg/per rat in 300 µl of sunflower oil as vehicle), while the second half were pre-treated with the vehicle alone. HPLC, Western Blot and immunohistochemistry were used to analyze cerebral cortex and plasma. RESULTS: After BCCAO/R, BCP prevented the increase of lipoperoxides occurring in the vehicle-treated rats in both cerebral cortex and plasma. In the frontal cortex, BCP further prevented activation of the endocannabinoid system (ECS), spared the docosahexaenoic acid (DHA), appeared to prevent the increase of cyclooxygenase-2 and increased the peroxisome-proliferator activated receptor-alpha (PPAR-alpha) protein levels, while, in plasma, BCP induced the reduction of arachidonoylethanolamide (AEA) levels as compared to vehicle-treated rats. CONCLUSIONS: Collectively, the pre-treatment with BCP, likely acting as agonist for CB2 and PPAR-alpha receptors, modulates in a beneficial way the ECS activation and the lipoperoxidation, taken as indicative of oxidative stress. Furthermore, our results support the evidence that BCP may be used as a dietary supplement to control the physiological response to the hypoperfusion/reperfusion-induced oxidative stress.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Endocanabinoides/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Sesquiterpenos/administração & dosagem , Animais , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Doenças das Artérias Carótidas/tratamento farmacológico , Doenças das Artérias Carótidas/metabolismo , Doenças das Artérias Carótidas/patologia , Artéria Carótida Primitiva/metabolismo , Artéria Carótida Primitiva/patologia , Lobo Frontal/efeitos dos fármacos , Lobo Frontal/patologia , Hipocampo , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Estresse Oxidativo/efeitos dos fármacos , Sesquiterpenos Policíclicos , Ratos , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia
6.
Int J Mol Sci ; 19(2)2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-29385102

RESUMO

This study aims to evaluate the putative roles of a single acute dose of resveratrol (RVT) in preventing cerebral oxidative stress induced by bilateral common carotid artery occlusion, followed by reperfusion (BCCAO/R) and to investigate RVT's ability to preserve the neuronal structural integrity. Frontal and temporal-occipital cortices were examined in two groups of adult Wistar rats, sham-operated and submitted to BCCAO/R. In both groups, 6 h before surgery, half the rats were gavage-fed with a single dose of RVT (40 mg/per rat in 300 µL of sunflower oil as the vehicle), while the second half received the vehicle alone. In the frontal cortex, RVT pre-treatment prevented the BCCAO/R-induced increase of lipoperoxides, augmented concentrations of palmitoylethanolamide and docosahexaenoic acid, increased relative levels of the cannabinoid receptors type 1 (CB1) and 2 (CB2), and peroxisome-proliferator-activated-receptor (PPAR)-α proteins. Increased expression of CB1/CB2 receptors mirrored that of synaptophysin and post-synaptic density-95 protein. No BCCAO/R-induced changes occurred in the temporal-occipital cortex. Collectively, our results demonstrate that, in the frontal cortex, RVT pre-treatment prevents the BCCAO/R-induced oxidative stress and modulates the endocannabinoid and PPAR-α systems. The increased expression of synaptic structural proteins further suggests the possible efficacy of RVT as a dietary supplement to preserve the nervous tissue metabolism and control the physiological response to the hypoperfusion/reperfusion challenge.


Assuntos
Doenças das Artérias Carótidas , Lobo Frontal/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Receptores de Canabinoides/efeitos dos fármacos , Traumatismo por Reperfusão/tratamento farmacológico , Estilbenos/farmacologia , Animais , Arteriopatias Oclusivas , Lobo Frontal/metabolismo , Regulação da Expressão Gênica , Masculino , Ratos , Ratos Wistar , Receptores de Canabinoides/genética , Traumatismo por Reperfusão/metabolismo , Resveratrol , Estilbenos/uso terapêutico
7.
Int J Mol Sci ; 19(6)2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29891784

RESUMO

n-3 highly unsaturated fatty acids (n-3 HUFA) directly and indirectly regulate lipid metabolism, energy balance and the inflammatory response. We investigated changes to the n-3 HUFA score of healthy adults, induced by different types and amounts of conjugated linoleic acid (CLA)-enriched (ENCH) cheeses consumed for different periods of time, compared to dietary fish oil (FO) pills (500 mg, each containing 100 mg of eicosapentaenoic and docosahexaenoic acids­EPA+DHA) or α-linolenic acid (ALA)-rich linseed oil (4 g, containing 2 g of ALA). A significant increase in the n-3 HUFA score was observed, in a dose-dependent manner, after administration of the FO supplement. In terms of the impact on the n-3 HUFA score, the intake of ENCH cheese (90 g/day) for two or four weeks was equivalent to the administration of one or two FO pills, respectively. Conversely, the linseed oil intake did not significantly impact the n-3 HUFA score. Feeding ENCH cheeses from different sources (bovine, ovine and caprine) for two months improved the n-3 HUFA score by increasing plasma DHA, and the effect was proportional to the CLA content in the cheese. We suggest that the improved n-3 HUFA score resulting from ENCH cheese intake may be attributed to increased peroxisome proliferator-activated receptor alpha (PPAR-α) activity. This study demonstrates that natural ENCH cheese is an alternative nutritional source of n-3 HUFA in humans.


Assuntos
Queijo/análise , Dieta , Ácidos Graxos Ômega-3/sangue , Ácidos Linoleicos Conjugados/administração & dosagem , Adulto , Feminino , Humanos , Masculino , PPAR alfa/genética , PPAR alfa/metabolismo
8.
J Lipid Res ; 58(2): 301-316, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27903595

RESUMO

Imbalanced dietary n-3 and n-6 PUFA content has been associated with a number of neurological conditions. Endocannabinoids are n-6 PUFA derivatives, whose brain concentrations are sensitive to modifications of fatty acid composition of the diet and play a central role in the regulation of mood and cognition. As such, the endocannabinoid system appears to be an ideal candidate for mediating the effects of dietary fatty acids on mood and cognition. Lifelong administration of isocaloric α-linolenic acid (ALA)-deficient and -enriched diets induced short-term memory deficits, whereas only dietary ALA enrichment altered emotional reactivity in adult male rats compared with animals fed a standard diet that was balanced in ALA/linoleic acid (LA) ratio. In the prefrontal cortex, both diets reduced 2-AG levels and increased MAG lipase expression, whereas only the enriched diet reduced AEA levels, simultaneously increasing FAAH expression. In the hippocampus, an ALA-enriched diet decreased AEA content and NAPE-PLD expression, and reduced 2-AG content while increasing MAG lipase expression. These findings highlight the importance of a diet balanced in fatty acid content for normal brain functions and to support a link between dietary ALA, the brain endocannabinoid system, and behavior, which indicates that dietary ALA intake is a sufficient condition for altering the endocannabinoid system in brain regions modulating mood and cognition.


Assuntos
Encéfalo/metabolismo , Cognição/fisiologia , Emoções/fisiologia , Endocanabinoides/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Cognição/efeitos dos fármacos , Dieta , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/metabolismo , Emoções/efeitos dos fármacos , Ácidos Graxos Ômega-3/administração & dosagem , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/administração & dosagem , Ácidos Graxos Ômega-6/metabolismo , Humanos , Ácido Linoleico/administração & dosagem , Ácido Linoleico/metabolismo , Memória de Curto Prazo/efeitos dos fármacos , Memória de Curto Prazo/fisiologia , Ratos , Ácido alfa-Linolênico/administração & dosagem , Ácido alfa-Linolênico/metabolismo
9.
Lipids Health Dis ; 16(1): 14, 2017 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-28103941

RESUMO

BACKGROUND: The transient global cerebral hypoperfusion/reperfusion achieved by induction of Bilateral Common Carotid Artery Occlusion followed by Reperfusion (BCCAO/R) may trigger a physiological response in an attempt to preserve tissue and function integrity. There are several candidate molecules among which the endocannabinoid system (ECS) and/or peroxisome-proliferator activated receptor-alpha (PPAR-alpha) may play a role in modulating oxidative stress and inflammation. The aims of the present study are to evaluate whether the ECS, the enzyme cyclooxygenase-2 (COX-2) and PPAR-alpha are involved during BCCAO/R in rat brain, and to identify possible markers of the ongoing BCCAO/R-induced challenge in plasma. METHODS: Adult Wistar rats underwent BCCAO/R with 30 min hypoperfusion followed by 60 min reperfusion. The frontal and temporal-occipital cortices and plasma were analyzed by high performance liquid chromatography-mass spectrometry (HPLC-MS) to determine concentrations of endocannabinoids (eCBs) and related molecules behaving as ligands of PPAR-alpha, and of oxidative-stress markers such as lipoperoxides, while Western Blot and immunohistochemistry were used to study protein expression of cannabinoid receptors, COX-2 and PPAR-alpha. Unpaired Student's t-test was used to evaluate statistical differences between groups. RESULTS: The acute BCCAO/R procedure is followed by increased brain tissue levels of the eCBs 2-arachidonoylglycerol and anandamide, palmitoylethanolamide, an avid ligand of PPAR-alpha, lipoperoxides, type 1 (CB1) and type 2 (CB2) cannabinoid receptors, and COX-2, and decreased brain tissue concentrations of docosahexaenoic acid (DHA), one of the major targets of lipid peroxidation. In plasma, increased levels of anandamide and lipoperoxides were observed. CONCLUSIONS: The BCCAO/R stimulated early molecular changes that can be easily traced in brain tissue and plasma, and that are indicative of the tissue physiological response to the reperfusion-induced oxidative stress and inflammation. The observed variations suggest that the positive modulation of the ECS and the increase of proinflammatory substances are directly correlated events. Increase of plasmatic levels of anandamide and lipoperoxides further suggests that dysregulation of these molecules may be taken as an indicator of an ongoing hypoperfusion/reperfusion challenge.


Assuntos
Isquemia Encefálica/metabolismo , Transtornos Cerebrovasculares/metabolismo , Endocanabinoides/metabolismo , Peróxidos Lipídicos/metabolismo , Traumatismo por Reperfusão/metabolismo , Amidas , Animais , Ácidos Araquidônicos/metabolismo , Isquemia Encefálica/fisiopatologia , Artéria Carótida Primitiva/cirurgia , Transtornos Cerebrovasculares/fisiopatologia , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Etanolaminas/metabolismo , Lobo Frontal/metabolismo , Lobo Frontal/fisiopatologia , Regulação da Expressão Gênica , Glicerídeos/metabolismo , Peroxidação de Lipídeos , Masculino , Lobo Occipital/metabolismo , Lobo Occipital/fisiopatologia , Estresse Oxidativo , PPAR alfa/genética , PPAR alfa/metabolismo , Ácidos Palmíticos/metabolismo , Alcamidas Poli-Insaturadas/metabolismo , Ratos , Ratos Wistar , Traumatismo por Reperfusão/fisiopatologia , Lobo Temporal/metabolismo , Lobo Temporal/fisiopatologia
10.
Epilepsia Open ; 9(1): 432-438, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38016924

RESUMO

Neuromodulation by means of vagus nerve stimulation (VNS) therapy, reduces seizure frequency and improves quality of life in subjects with drug-resistant epilepsy (DRE), yet its molecular mechanism remains unclear. This study investigates the impact of chronic VNS on lipid bioactive metabolites and fatty acids (FA) in the plasma and red blood cells of seven subjects with DRE. By measuring expression levels of peroxisome proliferator-activated receptor α (PPARα) and sirtuin1 (SIRT1) genes-key regulators in energy and lipid metabolism-and lipid profiles before and after various stages of VNS, this study identifies potential mechanisms by which VNS may reduce seizure frequency. Blood samples collected before VNS device implantation, after acute VNS stimulus, and following gradual intensity increments up to therapeutic levels revealed that VNS increases SIRT1 and PPARα expression and erythrocyte concentrations of PPARα ligands. Additionally, we observe reduced de novo lipogenesis biomarkers in erythrocytes, indicating that VNS may influence systemic lipid and energy metabolism. Our findings suggest that VNS could enhance neuronal function by modulating energy metabolism, thus potentially reducing seizure frequency in subjects with DRE. Future research targeting SIRT1 and PPARα may provide innovative therapeutic strategies for managing DRE. Plain Language Summary: The exact mechanism of VNS is still unknown. This study investigated the effects of VNS Therapy on energetic metabolism, suggesting possible novel biomarkers for DRE subjects and neuromodulation therapies.


Assuntos
Epilepsia Resistente a Medicamentos , Estimulação do Nervo Vago , Humanos , Qualidade de Vida , PPAR alfa , Sirtuína 1 , Epilepsia Resistente a Medicamentos/terapia , Convulsões , Ácidos Graxos
11.
Nutrients ; 16(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38398849

RESUMO

We propose a novel method for assessing metabolic flexibility (MF) through indirect calorimetry. A total of twenty healthy volunteers (10 females; 10 males) aged 45-65 were categorized into a Low-Intensity activity group (LI, 0-1 session of 1 h per week) and a High-Intensity activity group (HI, 5-6 sessions of 2 h per week). Volunteers underwent a stepwise exercise test on a cycle ergometer, connected to a calorimeter, to examine respiratory gas exchange to evaluate peak fatty acid Oxidation (PFO) and peak carbohydrate oxidation (PCO). Circulating peroxisome proliferator-activated receptor α (PPARα) biomarkers, docosahexaenoic acid/eicosapentaenoic acid (DHA/EPA) ratio and N-oleoylethanolamine (OEA), and the endocannabinoid- 2-arachidonoylglycerol (2-AG), were evaluated. We developed two MF parameters: the MF index (MFI), calculated by the product of PFO normalized per kg of fat-free mass (FFM) and the percentage of VO2max at PFO, and the peak energy substrates' oxidation (PESO), computed by summing the kilocalories from the PFO and PCO, normalized per kg FFM. The MFI and PESO were significantly different between the HI and LI groups, showing strong correlations with the circulating bioactive substances. Higher DHA/EPA ratio (p ≤ 0.05) and OEA (p ≤ 0.01), but lower 2-AG levels (p ≤ 0.01) were found in the HI group. These new parameters successfully established a functional link between MF and the balance of PPARα/endocannabinoid systems.


Assuntos
Endocanabinoides , PPAR alfa , Masculino , Pessoa de Meia-Idade , Feminino , Humanos , Calorimetria Indireta , Oxirredução , Ácidos Docosa-Hexaenoicos , Ácido Eicosapentaenoico
12.
J Lipid Res ; 54(11): 3158-69, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23956443

RESUMO

Infections share with atherosclerosis similar lipid alterations, with accumulation of cholesteryl esters (CEs) in activated macrophages and concomitant decrease of cholesterol-HDL (C-HDL). Yet the precise role of HDL during microbial infection has not been fully elucidated. Activation of P388D1 by lipopolysaccharide (LPS) triggered an increase of CEs and neutral lipid contents, along with a remarkable enhancement in 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate-HDL uptake. Similar results were found in human monocyte-derived macrophages and monocytes cocultured with phytohemagglutinin-activated lymphocytes. Inhibition of cholesterol esterification with Sandoz-58035 resulted in 80% suppression of CE biosynthesis in P388D1. However, only a 35% decrease of CE content, together with increased scavenger receptor class B member 1 (SR-B1) protein expression, was found after 72 h and thereafter up to 16 passages of continuous ACAT suppression. Chronic inhibition blunted the effect of LPS treatment on cholesterol metabolism, increased the ratio of free cholesterol/CE content and enhanced interleukin 6 secretion. These results imply that, besides de novo biosynthesis and acquisition by LDL, HDL contributes probably through SR-B1 to the increased CE content in macrophages, partly explaining the low levels of C-HDL during their activation. Our data suggest that in those conditions where more CEs are required, HDL rather than removing, may supply CEs to the cells.


Assuntos
Ésteres do Colesterol/metabolismo , Lipopolissacarídeos/farmacologia , Lipoproteínas HDL/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Animais , Antígenos CD36/metabolismo , Linhagem Celular , Citocinas/biossíntese , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Macrófagos/imunologia , Camundongos , Monócitos/citologia , NF-kappa B/metabolismo , Oxirredução/efeitos dos fármacos , Fito-Hemaglutininas/farmacologia , Receptor 4 Toll-Like/metabolismo
13.
Br J Nutr ; 109(8): 1453-62, 2013 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-22917075

RESUMO

Intake of dairy fat has long been considered as a risk factor for CVD. Pasture and dietary lipid supplementation have been reported to be reliable strategies in ruminant nutrition, in order to increase the content of α-linolenic acid (ALA), conjugated linoleic acid (CLA) and vaccenic acid (VA), and decrease SFA in milk fat. In the present study, we aimed at verifying whether consumption of a sheep cheese, naturally enriched in ALA, CLA and VA, would modify the plasma lipid and endocannabinoid profiles in mildly hypercholesterolaemic subjects. A total of forty-two adult volunteers (nineteen males and twenty-three females) with diagnosed mildly hypercholesterolaemia (total cholesterol 5·68-7·49 mmol/l) were randomly assigned to eat 90 g/d of a control or enriched cheese for 3 weeks, with a cross-over after 3 weeks of washout. Plasma lipids, endocannabinoids, adipokines and inflammatory markers were measured. The intake of enriched cheese significantly increased the plasma concentrations of CLA, VA, the n-3 fatty acids ALA and EPA, and more remarkably decreased that of the endocannabinoid anandamide. LDL-cholesterol decreased significantly (7%). No changes were detected in the levels of inflammatory markers; however, a significant correlation was found between the plasma levels of anandamide and leptin. The control cheese modified none of the parameters measured. The results obtained do not support the view that intake of dairy fat is detrimental to hypercholesterolaemic subjects. Indeed, they show that a naturally enriched cheese possesses beneficial properties, since it ameliorates the plasma lipid profile, and more remarkably reduces endocannabinoid biosynthesis.


Assuntos
Queijo , LDL-Colesterol/sangue , Gorduras na Dieta/administração & dosagem , Endocanabinoides/biossíntese , Alimentos Fortificados , Hipercolesterolemia/dietoterapia , Ácidos Oleicos/sangue , Adulto , Análise de Variância , Feminino , Humanos , Leptina/sangue , Ácidos Linoleicos/sangue , Masculino , Pessoa de Meia-Idade , Ácidos Oleicos/metabolismo , Método Simples-Cego
14.
Nutrients ; 15(22)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38004155

RESUMO

We investigated the influence of varying dietary polyunsaturated fatty acid (PUFA)/saturated fatty acids (SFA) ratios on insulin resistance (IR), fatty acid metabolism, N-acylethanolamine (NAE) bioactive metabolite levels, and mitochondrial function in lean and obese Zucker rats in a model designed to study obesity and IR from overnutrition. We provided diets with 7% fat (w/w), with either a low PUFA/SFA ratio of 0.48, predominantly comprising palmitic acid (PA), (diet-PA), or the standard AIN-93G diet with a high PUFA/SFA ratio of 3.66 (control, diet-C) over eight weeks. In obese rats on diet-PA versus diet-C, there were reductions in plasma triglycerides, cholesterol, glucose, insulin concentrations and improved muscle mitochondrial function, inflammatory markers and increased muscle N-oleoylethanolamine (OEA), a bioactive lipid that modulates lipid metabolism and metabolic flexibility. Elevated palmitic acid levels were found exclusively in obese rats, regardless of their diet, implying an endogenous production through de novo lipogenesis rather than from a dietary origin. In conclusion, a reduced dietary PUFA/SFA ratio positively influenced glucose and lipid metabolism without affecting long-term PA tissue concentrations. This likely occurs due to an increase in OEA biosynthesis, improving metabolic flexibility in obese rats. Our results hint at a pivotal role for balanced dietary PA in countering the effects of overnutrition-induced obesity.


Assuntos
Ácidos Graxos , Resistência à Insulina , Ratos , Animais , Ácidos Graxos/metabolismo , Ratos Zucker , Gorduras na Dieta/farmacologia , Ácidos Graxos Insaturados/metabolismo , Obesidade/metabolismo , Dieta , Resistência à Insulina/fisiologia , Metabolismo dos Lipídeos , Glucose , Ácidos Palmíticos
15.
Tumour Biol ; 33(2): 443-53, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22161086

RESUMO

Tumour are characterised by a high content of cholesteryl esters (CEs) stored in lipid droplets purported to be due to a high rate of intracellular esterification of cholesterol. To verify whether and which pathways involved in CE accumulation are essential in tumour proliferation, the effect of CE deprivation, from both exogenous and endogenous sources, on CEM-CCRF cells was investigated. Cholesterol synthesis, esterification and content, low-density lipoprotein (LDL) binding and high-density lipoprotein (HDL)-CE uptake were evaluated in cultured in both conventional and delipidated bovine serum with or without oleic or linoleic acids, cholesteryl oleate, LDL and HDL. High content of CEs in lipid droplets in this cell line was due to esterification of both newly synthesised cholesterol and that obtained from hydrolysis of LDL; moreover, a significant amount of CE was derived from HDL-CE uptake. Cell proliferation was slightly affected by either acute or chronic treatment up to 400 µM with Sz-58035, an acyl-cholesteryl cholesterol esterification inhibitor (ACAT); although when the enzyme activity was continuously inhibited, CE content in lipid droplets was significantly higher than those in control cells. In these cells, analysis of intracellular and medium CEs revealed a profile reflecting the characteristics of bovine serum, suggesting a plasma origin of CE molecules. Cell proliferation arrest in delipidated medium was almost completely prevented in the first 72 h by LDL or HDL, although in subsequent cultures with LDL, it manifested an increasing mortality rate. This study suggests that high content of CEs in CEM-CCRF is mainly derived from plasma lipoproteins and that part of CEs stored in lipid droplets are obtained after being taken up from HDL. This route appears to be up-regulated according to cell requirements and involved in low levels of c-HDL during cancer. Moreover, the dependence of tumour cells on a source of lipoprotein provides a novel impetus in developing therapeutic strategies for use in the treatment of some tumours.


Assuntos
Ésteres do Colesterol/química , Lipoproteínas/metabolismo , Linfócitos/citologia , Animais , Bovinos , Linhagem Celular Tumoral , Proliferação de Células , Colesterol/química , Meios de Cultura/farmacologia , Ésteres/química , Humanos , Leucemia de Células T/terapia , Lipídeos/química , Lipoproteínas/química , Lipoproteínas LDL/metabolismo , Fatores de Tempo
16.
Lipids Health Dis ; 11: 8, 2012 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-22239952

RESUMO

BACKGROUND: Ischemia/reperfusion leads to inflammation and oxidative stress which damages membrane highly polyunsaturated fatty acids (HPUFAs) and eventually induces neuronal death. This study evaluates the effect of the administration of Pistacia lentiscus L. essential oil (E.O.), a mixture of terpenes and sesquiterpenes, on modifications of fatty acid profile and endocannabinoid (eCB) congener concentrations induced by transient bilateral common carotid artery occlusion (BCCAO) in the rat frontal cortex and plasma. METHODS: Adult Wistar rats underwent BCCAO for 20 min followed by 30 min reperfusion (BCCAO/R). 6 hours before surgery, rats, randomly assigned to four groups, were gavaged either with E.O. (200 mg/0.45 ml of sunflower oil as vehicle) or with the vehicle alone. RESULTS: BCCAO/R triggered in frontal cortex a decrease of docosahexaenoic acid (DHA), the membrane highly polyunsaturated fatty acid most susceptible to oxidation. Pre-treatment with E.O. prevented this change and led further to decreased levels of the enzyme cyclooxygenase-2 (COX-2), as assessed by Western Blot. In plasma, only after BCCAO/R, E.O. administration increased both the ratio of DHA-to-its precursor, eicosapentaenoic acid (EPA), and levels of palmytoylethanolamide (PEA) and oleoylethanolamide (OEA). CONCLUSIONS: Acute treatment with E.O. before BCCAO/R elicits changes both in the frontal cortex, where the BCCAO/R-induced decrease of DHA is apparently prevented and COX-2 expression decreases, and in plasma, where PEA and OEA levels and DHA biosynthesis increase. It is suggested that the increase of PEA and OEA plasma levels may induce DHA biosynthesis via peroxisome proliferator-activated receptor (PPAR) alpha activation, protecting brain tissue from ischemia/reperfusion injury.


Assuntos
Artéria Carótida Primitiva/patologia , Lobo Frontal/efeitos dos fármacos , Hipóxia-Isquemia Encefálica/metabolismo , Fármacos Neuroprotetores/farmacologia , Óleos de Plantas/farmacologia , Animais , Moduladores de Receptores de Canabinoides/sangue , Moduladores de Receptores de Canabinoides/metabolismo , Ciclo-Oxigenase 2/metabolismo , Ácidos Graxos/sangue , Ácidos Graxos/metabolismo , Lobo Frontal/irrigação sanguínea , Lobo Frontal/metabolismo , Lobo Frontal/patologia , Hipóxia-Isquemia Encefálica/sangue , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Masculino , Fármacos Neuroprotetores/uso terapêutico , Pistacia , Óleos de Plantas/uso terapêutico , Ratos , Ratos Wistar , Traumatismo por Reperfusão/sangue , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/prevenção & controle
17.
Front Nutr ; 9: 861664, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35399673

RESUMO

Palmitic acid (PA) is ubiquitously present in dietary fat guaranteeing an average intake of about 20 g/d. The relative high requirement and relative content in the human body, which accounts for 20-30% of total fatty acids (FAs), is justified by its relevant nutritional role. In particular physiological conditions, such as in the fetal stage or in the developing brain, the respectively inefficient placental and brain blood-barrier transfer of PA strongly induces its endogenous biosynthesis from glucose via de novo lipogenesis (DNL) to secure a tight homeostatic control of PA tissue concentration required to exert its multiple physiological activities. However, pathophysiological conditions (insulin resistance) are characterized by a sustained DNL in the liver and aimed at preventing the excess accumulation of glucose, which result in increased tissue content of PA and disrupted homeostatic control of its tissue concentration. This leads to an overaccumulation of tissue PA, which results in dyslipidemia, increased ectopic fat accumulation, and inflammatory tone via toll-like receptor 4. Any change in dietary saturated FAs (SFAs) usually reflects a complementary change in polyunsaturated FA (PUFA) intake. Since PUFA particularly n-3 highly PUFA, suppress lipogenic gene expression, their reduction in intake rather than excess of dietary SFA may promote endogenous PA production via DNL. Thereby, the increase in tissue PA and its deleterious consequences from dysregulated DNL can be mistakenly attributed to dietary intake of PA.

18.
Front Nutr ; 9: 834066, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360687

RESUMO

We evaluated whether maternal intake of conjugated linoleic acid (CLA) and docosahexaenoic acid (DHA) in the phospholipid (PL) form (CLA-DHA PL) affects maternal and fetal brain and liver fatty acids (FAs) profile and the biosynthesis of FA-derived bioactive lipid mediators N-acylethanolamines (NAEs) involved in several neurophysiological functions. We fed rat dams during the first 2/3 of their pregnancy a CLA-DHA PL diet containing PL-bound 0.5% CLA and 0.2% DHA. FA and NAE profiles were analyzed in maternal and fetal liver and brain by Liquid Chromatography diode array detector (LC-DAD) and MS/MS in line. We found that CLA and DHA crossed the placenta and were readily incorporated into the fetal liver and brain. CLA metabolites were also found abundantly in fetal tissues. Changes in the FA profile induced by the CLA-DHA PL diet influenced the biosynthesis of NAE derived from arachidonic acid (ARA; N-arachidonoylethanolamine, AEA) and from DHA (N-docosahexaenoylethanolamine, DHEA). The latter has been previously shown to promote synaptogenesis and neuritogenesis. The reduced tissue n6/n3 ratio was associated to a significant decrease of AEA levels in the fetal and maternal liver and an increase of DHEA in the fetal and maternal liver and in the fetal brain. Maternal dietary CLA-DHA PL by promptly modifying fetal brain FA metabolism, and thereby, increasing DHEA, might represent an effective nutritional strategy to promote neurite growth and synaptogenesis and protect the offspring from neurological and psychiatric disorders with neuroinflammatory and neurodegenerative basis during the critical prenatal period.

19.
Geroscience ; 43(4): 1783-1798, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33650014

RESUMO

To evaluate whether a peculiar plasma profile of fatty acids and endocannabinoidome (eCBome)-related mediators may be associated to longevity, we assessed them in octogenarians (Old; n=42) living in the east-central mountain area of Sardinia, a High-Longevity Zone (HLZ), compared to sexagenarian (Young; n=21) subjects from the same area, and to Olds (n=22) from the Northern Sardinia indicated as Lower-Longevity Zone (LLZ). We found significant increases in conjugated linoleic acid (CLA) and heptadecanoic acid (17:0) levels in Old-HLZ with respect to younger subjects and Old-LLZ subjects. Young-HLZ subjects exhibited higher circulating levels of pentadecanoic acid (15:0) and retinol. Palmitoleic acid (POA) was elevated in both Young and Old subjects from the HLZ. eCBome profile showed a significantly increased plasma level of the two endocannabinoids, N-arachidonoyl-ethanolamine (AEA) and 2-arachidonoyl-glycerol (2-AG) in Old-HLZ subjects compared to Young-HLZ and Old-LLZ respectively. In addition, we found increased N-oleoyl-ethanolamine (OEA), 2-linoleoyl-glycerol (2-LG) and 2-oleoyl-glycerol (2-OG) levels in Old-HLZ group with respect to Young-HLZ (as for OEA an d 2-LG) and both the Old-LLZ and Young-HLZ for 2-OG. The endogenous metabolite of docosahexaenoic acid (DHA), N-docosahexaenoyl-ethanolamine (DHEA) was significantly increased in Old-HLZ subjects. In conclusion, our results suggest that in the HLZ area, Young and Old subjects exhibited a favourable, albeit distinctive, fatty acids and eCBome profile that may be indicative of a metabolic pattern potentially protective from adverse chronic conditions. These factors could point to a suitable physiological metabolic pattern that may counteract the adverse stimuli leading to age-related disorders such as neurodegenerative and metabolic diseases.


Assuntos
Ácidos Graxos , Longevidade , Idoso de 80 Anos ou mais , Etanolamina , Etanolaminas , Humanos , Itália , Ácidos Oleicos
20.
Nutrients ; 13(12)2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34959892

RESUMO

Bariatric surger (BS) is characterized by lipid metabolic changes as a response to the massive release of non-esterified fatty acids (NEFA) from adipose depots. The study aimed at evaluating changes in polyunsaturated fatty acids (PUFA) metabolism and biosynthesis of the lipid mediators N-acylethanolamines (NAE), as indices of nuclear peroxisome proliferator-activated receptor (PPAR)-α activation. The observational study was performed on 35 subjects (27 female, 8 male) with obesity, undergoing bariatric surgery. We assessed plasma FA and NAE profiles by LC-MS/MS, clinical parameters and anthropometric measures before and 1 and 6 months after bariatric surgery. One month after bariatric surgery, as body weight and clinical parameters improved significantly, we found higher plasma levels of N-oleoylethanolamine, arachidonic and a 22:6-n3/20:5-n3 ratio as evidence of PPAR-α activation. These changes corresponded to higher circulating levels of NEFA and a steep reduction of the fat mass. After 6 months 22:6-n3/20:5-n3 remained elevated and fat mass was further reduced. Our data suggest that the massive release of NEFA from adipose tissue at 1-Post, possibly by inducing PPAR-α, may enhance FA metabolism contributing to fat depot reduction and improved metabolic parameters in the early stage. However, PUFA metabolic changes favor n6 PUFA biosynthesis, requiring a nutritional strategy aimed at reducing the n6/n3 PUFA ratio.


Assuntos
Cirurgia Bariátrica , Ácidos Graxos Insaturados/metabolismo , Obesidade/metabolismo , PPAR alfa/metabolismo , Tecido Adiposo/metabolismo , Adulto , Ácido Araquidônico/metabolismo , Composição Corporal , Endocanabinoides/metabolismo , Etanolaminas/metabolismo , Feminino , Humanos , Masculino , Ácidos Oleicos/metabolismo , Período Pós-Operatório
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa