Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Nat Immunol ; 23(8): 1183-1192, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35902637

RESUMO

Anti-programmed death-1 (anti-PD-1) immunotherapy reinvigorates CD8 T cell responses in patients with cancer but PD-1 is also expressed by other immune cells, including follicular helper CD4 T cells (Tfh) which are involved in germinal centre responses. Little is known, however, about the effects of anti-PD-1 immunotherapy on noncancer immune responses in humans. To investigate this question, we examined the impact of anti-PD-1 immunotherapy on the Tfh-B cell axis responding to unrelated viral antigens. Following influenza vaccination, a subset of adults receiving anti-PD-1 had more robust circulating Tfh responses than adults not receiving immunotherapy. PD-1 pathway blockade resulted in transcriptional signatures of increased cellular proliferation in circulating Tfh and responding B cells compared with controls. These latter observations suggest an underlying change in the Tfh-B cell and germinal centre axis in a subset of immunotherapy patients. Together, these results demonstrate dynamic effects of anti-PD-1 therapy on influenza vaccine responses and highlight analytical vaccination as an approach that may reveal underlying immune predisposition to adverse events.


Assuntos
Vacinas contra Influenza , Adulto , Humanos , Imunidade Humoral , Estações do Ano , Linfócitos T Auxiliares-Indutores , Vacinação
2.
Blood ; 124(14): 2203-12, 2014 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-25150295

RESUMO

RUNX1 is a master transcription factor in hematopoiesis and mediates the specification and homeostasis of hematopoietic stem and progenitor cells (HSPCs). Disruptions in RUNX1 are well known to lead to hematologic disease. In this study, we sought to identify and characterize RUNX1 target genes in HSPCs by performing RUNX1 chromatin immunoprecipitation with high-throughput sequencing (ChIP-seq) using a murine HSPC line and complementing this data with our previously described gene expression profiling of primary wild-type and RUNX1-deficient HSPCs (Lineage(-)/cKit(+)/Sca1(+)). From this analysis, we identified and confirmed that Hmga2, a known oncogene, as a direct target of RUNX1. Hmga2 was strongly upregulated in RUNX1-deficient HSPCs, and the promoter of Hmga2 was responsive in a cell-type dependent manner upon coexpression of RUNX1. Conditional Runx1 knockout mice exhibit expansion of their HSPCs and myeloid progenitors as hallmark phenotypes. To further validate and establish that Hmga2 plays a role in inducing HSPC expansion, we generated mouse models of HMGA2 and RUNX1 deficiency. Although mice lacking both factors continued to display higher frequencies of HSPCs, the expansion of myeloid progenitors was effectively rescued. The data presented here establish Hmga2 as a transcriptional target of RUNX1 and a critical regulator of myeloid progenitor expansion.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Regulação da Expressão Gênica , Proteína HMGA2/metabolismo , Células Progenitoras Mieloides/citologia , Animais , Sítios de Ligação , Linhagem Celular , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Células Jurkat , Células K562 , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Células NIH 3T3 , Fenótipo , Fatores de Transcrição/metabolismo , Regulação para Cima
3.
Cell Rep Med ; 2(5): 100262, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34095875

RESUMO

Humoral immune responses are dysregulated with aging, but the cellular and molecular pathways involved remain incompletely understood. In particular, little is known about the effects of aging on T follicular helper (Tfh) CD4 cells, the key cells that provide help to B cells for effective humoral immunity. We performed transcriptional profiling and cellular analysis on circulating Tfh before and after influenza vaccination in young and elderly adults. First, whole-blood transcriptional profiling shows that ICOS+CD38+ cTfh following vaccination preferentially enriches in gene sets associated with youth versus aging compared to other circulating T cell types. Second, vaccine-induced ICOS+CD38+ cTfh from the elderly had increased the expression of genes associated with inflammation, including tumor necrosis factor-nuclear factor κB (TNF-NF-κB) pathway activation. Finally, vaccine-induced ICOS+CD38+ cTfh display strong enrichment for signatures of underlying age-associated biological changes. These data highlight the ability to use vaccine-induced cTfh as cellular "biosensors" of underlying inflammatory and/or overall immune health.


Assuntos
Fatores Etários , Linfócitos B/imunologia , Proteína Coestimuladora de Linfócitos T Induzíveis/metabolismo , Inflamação/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Humanos , Imunidade Humoral/imunologia , Proteína Coestimuladora de Linfócitos T Induzíveis/imunologia , Inflamação/imunologia , Ativação Linfocitária/imunologia , Contagem de Linfócitos/métodos , Vacinação/métodos , Vacinas/metabolismo
4.
J Clin Invest ; 129(8): 3185-3200, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31264971

RESUMO

T follicular helper cells (Tfh), a subset of CD4+ T cells, provide requisite help to B cells in the germinal centers (GC) of lymphoid tissue. GC Tfh are identified by high expression of the chemokine receptor CXCR5 and the inhibitory molecule PD-1. Although more accessible, blood contains lower frequencies of CXCR5+ and PD-1+ cells that have been termed circulating Tfh (cTfh). However, it remains unclear whether GC Tfh exit lymphoid tissues and populate this cTfh pool. To examine exiting cells, we assessed the phenotype of Tfh present within the major conduit of efferent lymph from lymphoid tissues into blood, the human thoracic duct. Unlike what was found in blood, we consistently identified a CXCR5-bright PD-1-bright (CXCR5BrPD-1Br) Tfh population in thoracic duct lymph (TDL). These CXCR5BrPD-1Br TDL Tfh shared phenotypic and transcriptional similarities with GC Tfh. Moreover, components of the epigenetic profile of GC Tfh could be detected in CXCR5BrPD-1Br TDL Tfh and the transcriptional imprint of this epigenetic signature was enriched in an activated cTfh subset known to contain vaccine-responding cells. Together with data showing shared TCR sequences between the CXCR5BrPD-1Br TDL Tfh and cTfh, these studies identify a population in TDL as a circulatory intermediate connecting the biology of Tfh in blood to Tfh in lymphoid tissue.


Assuntos
Linfonodos/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Ducto Torácico/imunologia , Animais , Feminino , Humanos , Linfonodos/citologia , Macaca mulatta , Masculino , Receptor de Morte Celular Programada 1/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores CXCR5/imunologia , Linfócitos T Auxiliares-Indutores/citologia , Ducto Torácico/citologia
5.
Sci Immunol ; 2(8)2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28620653

RESUMO

T follicular helper (Tfh) CD4 cells are crucial providers of B cell help during adaptive immune responses. A circulating population of CD4 T cells, termed cTfh, have similarity to lymphoid Tfh, can provide B cell help, and responded to influenza vaccination. However, it is unclear whether human vaccination-induced cTfh respond in an antigen-specific manner and whether they form long-lasting memory. Here, we identified a cTfh population that expressed multiple T cell activation markers and could be readily identified by coexpression of ICOS and CD38. This subset expressed more Bcl-6, c-Maf, and IL-21 than other blood CD4 subsets. Influenza vaccination induced a strong response in the ICOS+CD38+ cTfh at day 7, and this population included hemagglutinin-specific cells by tetramer staining and antigen-stimulated Activation Induced Marker (AIM) expression. Moreover, TCRB sequencing identified a clonal response in ICOS+CD38+ cTfh that correlated strongly with the increased circulating ICOS+CD38+ cTfh frequency and the circulating plasmablast response. In subjects who received successive annual vaccinations, a recurrent oligoclonal response was identified in the ICOS+CD38+ cTfh subset at 7 days after every vaccination. These oligoclonal responses in ICOS+CD38+ cTfh after vaccination persisted in the ICOS-CD38- cTfh repertoire in subsequent years, suggesting clonal maintenance in a memory reservoir in the more-stable ICOS-CD38- cTfh subset. These data highlight the antigen-specificity, lineage relationships and memory properties of human cTfh responses to vaccination, providing new avenues for tracking and monitoring cTfh responses during infection and vaccination in humans.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa