Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pharm Res ; 40(6): 1355-1371, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35764755

RESUMO

This study examined the effect of buffer salts on the physical stability of spray-dried and lyophilized formulations of a model protein, bovine serum albumin (BSA). BSA formulations with various buffers were dried by either lyophilization or spray drying. The protein powders were then characterized using solid-state Fourier transform infrared spectroscopy (ssFTIR), powder X-ray diffraction (PXRD), size exclusion chromatography (SEC), solid-state hydrogen/deuterium exchange with mass spectrometry (ssHDX-MS), and solid-state nuclear magnetic resonance spectroscopy (ssNMR). Particle characterizations such as Brunauer-Emmett-Teller (BET) surface area, particle size distribution, and particle morphology were also performed. Results from conventional techniques such as ssFTIR did not exhibit correlations with the physical stability of studied formulations. Deconvoluted peak areas of deuterated samples from the ssHDX-MS study showed a satisfactory correlation with the loss of the monomeric peak area measured by SEC (R2 of 0.8722 for spray-dried formulations and 0.8428 for lyophilized formulations) in the 90-day accelerated stability study conducted at 40°C. mDSC and PXRD was unable to measure phase separation in the samples right after drying. In contrast, ssNMR successfully detected the occurrence of phase separation between the succinic buffer component and protein in the lyophilized formulation, which results in a distribution of microenvironmental acidity and the subsequent loss of long-term stability. Moreover, our results suggested that buffer salts have less impact on physical stability for the spray-dried formulations than the lyophilized solids.


Assuntos
Sais , Soroalbumina Bovina , Soroalbumina Bovina/química , Trealose/química , Hidrogênio/química , Liofilização/métodos , Pós/química
2.
Mol Pharm ; 18(7): 2657-2668, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34096731

RESUMO

Mannitol, leucine, and trehalose have been widely used in spray-dried formulations, especially for inhalation formulations. The individual contribution of these excipients on protein physical stability in spray-dried solids was studied here using bovine serum albumin (BSA) as a model protein. The spray-dried solids were characterized with scanning electron microscopy, powder X-ray diffraction, and solid-state Fourier-transform infrared spectroscopy to analyze particle morphology, crystallinity, and secondary structure change, respectively. Advanced solid-state characterizations were conducted with solid-state hydrogen-deuterium exchange (ssHDX) and solid-state nuclear magnetic resonance (ssNMR) to explore protein conformation and molecular interactions in the context of the system physical stability. Trehalose remained amorphous after spray-drying and was miscible with BSA, forming hydrogen bonds to maintain protein conformation, whereby this system showed the least monomer loss in the stability study. As indicated by ssNMR, both crystalline and amorphous forms of mannitol existed in the spray-dried BSA-mannitol solids, which explained its partial stabilizing effect on BSA. Leucine showed the strongest crystallization tendency after spray-drying and did not provide a stabilizing effect due to substantial immiscibility and phase separation with BSA as a result of crystal formation. This work showed novel applications of ssNMR in examining protein conformation and protein-excipient interaction in dry formulations. Overall, our results demonstrate the pivotal role of advanced solid-state characterization techniques in understanding the physical stability of spray-dried protein solids.


Assuntos
Excipientes/metabolismo , Manitol/química , Pós/metabolismo , Soroalbumina Bovina/metabolismo , Animais , Bovinos , Cristalização , Excipientes/química , Liofilização , Pós/química , Conformação Proteica , Estabilidade Proteica , Soroalbumina Bovina/química
3.
Pharm Res ; 37(11): 219, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33037471

RESUMO

PURPOSE: This study aims to understand the impact of spray drying nozzles on particle surface composition and aerosol stability. METHODS: The combination formulations of colistin and azithromycin were formulated by 2-fluid nozzle (2 N) or 3-fluid (3 N) spray drying in a molar ratio of 1:1. A 3-factor, 2-level (23) factorial design was selected to investigate effects of flow rate, inlet temperature and feed concentration on yield of spray drying and the performance of the spray dried formulations for the 3 N. RESULTS: FPF values for the 2 N formulation (72.9 ± 1.9% for azithromycin & 73.4 ± 0.8% for colistin) were higher than those for the 3 N formulation (56.5 ± 3.8% for azithromycin & 55.1 ± 1.6% for colistin) when stored at 20% RH for 1 day, which could be attributed to smaller physical size for the 2 N. There was no change in FPF for both drugs in the 2 N formulation after storage at 75% RH for 90 days; however, there was a slight increase in FPF for colistin in the 3 N formulation at the same storage conditions. Surface enrichment of hydrophobic azithromycin was measured by X-ray photoelectron spectroscopy for both 2 N and 3 N formulations and interactions were studied using FTIR. CONCLUSIONS: The 3-fluid nozzle provides flexibility in choosing different solvents and has the capability to spray dry at higher feed solid concentrations. This study highlights the impact of hydrophobic azithromycin enrichment on particle surface irrespective of the nozzle type, on the prevention of moisture-induced deterioration of FPF for hygroscopic colistin.


Assuntos
Antibacterianos/química , Azitromicina/química , Colistina/química , Tecnologia Farmacêutica/instrumentação , Administração por Inalação , Aerossóis , Antibacterianos/administração & dosagem , Azitromicina/administração & dosagem , Colistina/administração & dosagem , Composição de Medicamentos , Estabilidade de Medicamentos , Desenho de Equipamento , Umidade , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Pós , Solubilidade , Solventes/química , Propriedades de Superfície , Fatores de Tempo
5.
Pharm Res ; 37(1): 14, 2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31873808

RESUMO

PURPOSE: The aim of this study is to determine the effects of saccharide-containing excipients on the surface composition of spray-dried protein formulations and their matrix heterogeneity. METHODS: Spray-dried formulations of myoglobin or bovine serum albumin (BSA) were prepared without excipient or with sucrose, trehalose, or dextrans. Samples were characterized by solid-state Fourier-transform infrared spectroscopy (ssFTIR), differential scanning calorimetry (DSC), size exclusion chromatography (SEC) and scanning electron microscopy (SEM). Protein surface coverage was determined by X-ray photoelectron spectroscopy (XPS), while conformational differences were determined by solid-state hydrogen/deuterium exchange with mass spectrometry (ssHDX-MS). RESULTS: Structural differences were exhibited with the inclusion of different excipients, with dextran formulations indicating perturbation of secondary structure. XPS indicated sucrose and trehalose reduced protein surface concentration better than dextran-containing formulations. Using ssHDX-MS, the amount of deuterium incorporation and populations present were the largest in the samples processed with dextrans. Linear correlation was found between protein surface coverage and ssHDX-MS peak area (R2 = 0.853) for all formulations with saccharide-containing excipients. CONCLUSIONS: Lower molecular weight species of saccharides tend to enrich the particle surface and reduce protein concentration at the air-liquid interface, resulting in reduced population heterogeneity and improved physical stability, as identified by ssHDX-MS.


Assuntos
Excipientes/química , Mioglobina/química , Soroalbumina Bovina/química , Química Farmacêutica/métodos , Dessecação/métodos , Deutério/química , Dextranos/química , Espectrometria de Massas/métodos , Sacarose/química , Propriedades de Superfície , Trealose/química
6.
J Pharm Sci ; 112(1): 40-50, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36181875

RESUMO

This study examined physical stability of spray freeze dried (SFD) bovine serum albumin (BSA) solids produced using the radio frequency (RF)-assisted drying technique. BSA formulations were prepared with varying concentrations of trehalose and mannitol, using an excipient-free formulation as control. These formulations were produced using either traditional ultrasonic spray freeze drying (SFD) or RF-assisted ultrasonic spray freeze drying (RFSFD). The dried formulations were then characterized using Karl Fischer moisture content measurement, powder X-ray diffraction (PXRD), size exclusion chromatography (SEC), and solid-state hydrogen/deuterium exchange with mass spectrometry (ssHDX-MS). Moisture content did not have a good correlation with the physical stability of the formulations measured by SEC. ssHDX-MS metrics such as deconvoluted peak areas of the deuterated samples showed a satisfactory correlation (R2 = 0.914) with the SEC stability data. RFSFD improved the stability of formulations with 20 mg/ml of trehalose and no mannitol, and had similar stability with all other formulations as compared to SFD. This study demonstrated that RFSFD technique can significantly reduce the duration of primary drying cycle from 48.0 h to 27.5 h while maintaining or improving protein physical stability as compared to traditional lyophilization.


Assuntos
Trealose , Ultrassom , Trealose/química , Liofilização/métodos , Excipientes/química , Pós/química , Manitol/química , Soroalbumina Bovina/química
7.
Adv Drug Deliv Rev ; 172: 211-233, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33705880

RESUMO

Despite the boom in biologics over the past decade, the intrinsic instability of these large molecules poses significant challenges to formulation development. Almost half of all pharmaceutical protein products are formulated in the solid form to preserve protein native structure and extend product shelf-life. In this review, both traditional and emerging drying techniques for producing protein solids will be discussed. During the drying process, various stresses can impact the stability of protein solids. However, understanding the impact of stress on protein product quality can be challenging due to the lack of reliable characterization techniques for biological solids. Both conventional and advanced characterization techniques are discussed including differential scanning calorimetry (DSC), solid-state Fourier transform infrared spectrometry (ssFTIR), solid-state fluorescence spectrometry, solid-state hydrogen deuterium exchange (ssHDX), solid-state nuclear magnetic resonance (ssNMR) and solid-state photolytic labeling (ssPL). Advanced characterization tools may offer mechanistic investigations into local structural changes and interactions at higher resolutions. The continuous exploration of new drying techniques, as well as a better understanding of the effects caused by different drying techniques in solid state, would advance the formulation development of biological products with superior quality.


Assuntos
Produtos Biológicos/administração & dosagem , Proteínas/administração & dosagem , Tecnologia Farmacêutica/métodos , Produtos Biológicos/química , Técnicas de Química Analítica/métodos , Química Farmacêutica/métodos , Desenvolvimento de Medicamentos , Humanos , Estabilidade Proteica , Proteínas/química
8.
Int J Pharm ; 594: 120169, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33333176

RESUMO

This study aims to determine the impacts of drying method and excipient on changes in protein structure and physical stability of model protein solids. Protein solids containing one of two model proteins (lysozyme or myoglobin) were produced with or without excipients (sucrose or mannitol) using freeze drying or spray freeze drying (SFD). The protein powders were then characterized using solid-state Fourier transform infrared spectroscopy (ssFTIR), differential scanning calorimetry (DSC), circular dichroism spectrometry (CD), size exclusion chromatography (SEC), BET surface area measurements and solid-state hydrogen deuterium exchange with mass spectrometry (ssHDX-MS). ssFTIR and CD could identify little to no difference in structure of the proteins in the formulation. ssHDX-MS was able to identify the population heterogeneity, which was undetectable by conventional characterization techniques of ssFTIR and CD. ssHDX-MS metrics such as Dmax and peak area showed a good correlation with the protein physical instability (loss of the monomeric peak area by size exclusion chromatography) in 90-day stability studies conducted at 40 °C for lysozyme. Higher specific surface area was associated with greater loss in monomer content for myoglobin-mannitol formulations as compared to myoglobin-only formulations. Spray freeze drying seems a viable manufacturing technique for protein solids with appropriate optimization of formulations. The differences observed within the formulations and between the processes using ssHDX-MS, BET surface area measurements and SEC in this study provide an insight into the influence of drying methods and excipients on protein physical stability.


Assuntos
Química Farmacêutica , Excipientes , Composição de Medicamentos , Estabilidade de Medicamentos , Liofilização , Espectrometria de Massas
9.
Int J Pharm ; 607: 120942, 2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34324986

RESUMO

This study explored the feasibility of electrostatic spray drying for producing a monoclonal antibody (mAb) powder formulation at lower drying temperatures than conventional spray drying and its effect on protein stability. A mAb formulation was dried by either conventional spray drying or electrostatic spray drying with charge (ESD). The protein powders were then characterized using solid-state Fourier transform infrared spectroscopy (ssFTIR), differential scanning calorimetry (DSC), size exclusion chromatography (SEC), and solid-state hydrogen/deuterium exchange with mass spectrometry (ssHDX-MS). Particle characterizations such as BET surface area, particle size distribution, and particle morphology were also performed. Conventional spray drying of the mAb formulation at the inlet temperature of 70 °C failed to generate dry powders due to poor drying efficiency; electrostatic spray drying at the same temperature and 5 kV charge enabled the formation of powder formulation with satisfactory moisture contents. Deconvoluted peak areas of deuterated samples from the ssHDX-MS study showed a good correlation with the loss of the monomeric peak area measured by size exclusion chromatography in the 90-day accelerated stability study conducted at 40 °C. Low-temperature (70 °C inlet temperature) drying with an electrostatic charge (5 kV) led to better protein physical stability as compared with the samples spray-dried at the high temperature (130 °C inlet temperature) without charge. This study shows that electrostatic spray drying can produce solid monoclonal antibody formulation at lower inlet temperature than traditional spray drying with better physical stability.


Assuntos
Anticorpos Monoclonais , Química Farmacêutica , Liofilização , Tamanho da Partícula , Pós , Secagem por Atomização , Eletricidade Estática
10.
Int J Pharm ; 610: 121160, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34624446

RESUMO

The multi-drug resistance of Pseudomonas aeruginosa is an overwhelming cause of terminal and persistent lung infections in cystic fibrosis (CF) patients. Antimicrobial synergy has been shown for colistin and ivacaftor, and our study designed a relatively high drug-loading dry powder inhaler formulation containing nanoparticles of ivacaftor and colistin. The ivacaftor-colistin nanosuspensions (Iva-Col-NPs) were prepared by the anti-solvent method with different stabilizers. Based on the aggregation data, the formulation 7 (F7) with DSPG-PEG-OMe as the stabilizer was selected for further studies. The F7 consisted of ivacaftor, colistin and DSPG-PEG-OMe with a mass ratio of 1:1:1. The F7 powder formulation was developed using the ultrasonic spray-freeze-drying method and exhibited a rough surface with relatively high fine particle fraction values of 61.4 ± 3.4% for ivacaftor and 63.3 ± 3.3% for colistin, as well as superior emitted dose of 97.8 ± 0.3% for ivacaftor and 97.6 ± 0.5% for colistin. The F7 showed very significant dissolution improvement for poorly water soluble ivacaftor than the physical mixture. Incorporating two drugs in a single microparticle with synchronized dissolution and superior aerosol performance will maximize the synergy and bioactivity of those two drugs. Minimal cytotoxicity in Calu-3 human lung epithelial cells and enhanced antimicrobial activity against colistin-resistant P. aeruginosa suggested that our formulation has potential to improve the treatment of CF patients with lung infections.


Assuntos
Aminofenóis/administração & dosagem , Colistina/administração & dosagem , Sistemas de Liberação de Fármacos por Nanopartículas , Infecções por Pseudomonas , Quinolonas/administração & dosagem , Administração por Inalação , Aerossóis/administração & dosagem , Antibacterianos/administração & dosagem , Linhagem Celular , Combinação de Medicamentos , Inaladores de Pó Seco , Humanos , Pulmão , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa