Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 44(2): 452-464, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38126173

RESUMO

BACKGROUND: Aortic valve sclerosis (AVSc) presents similar pathogenetic mechanisms to coronary artery disease and is associated with short- and long-term mortality in patients with coronary artery disease. Evidence of AVSc-specific pathophysiological traits in acute myocardial infarction (AMI) is currently lacking. Thus, we aimed to identify a blood-based transcriptional signature that could differentiate AVSc from no-AVSc patients during AMI. METHODS: Whole-blood transcriptome of AVSc (n=44) and no-AVSc (n=66) patients with AMI was assessed by RNA sequencing on hospital admission. Feature selection, differential expression, and enrichment analyses were performed to identify gene expression patterns discriminating AVSc from no-AVSc and infer functional associations. Multivariable Cox regression analysis was used to estimate the hazard ratios of cardiovascular events in AVSc versus no-AVSc patients. RESULTS: This cross-sectional study identified a panel of 100 informative genes capable of distinguishing AVSc from no-AVSc patients with 94% accuracy. Further analysis revealed significant mean differences in 143 genes, of which 30 genes withstood correction for age and previous AMI or coronary interventions. Functional inference unveiled a significant association between AVSc and key biological processes, including acute inflammatory responses, type I IFN (interferon) response, platelet activation, and hemostasis. Notably, patients with AMI with AVSc exhibited a significantly higher incidence of adverse cardiovascular events during a 10-year follow-up period, with a full adjusted hazard ratio of 2.4 (95% CI, 1.3-4.5). CONCLUSIONS: Our findings shed light on the molecular mechanisms underlying AVSc and provide potential prognostic insights for patients with AMI with AVSc. During AMI, patients with AVSc showed increased type I IFN (interferon) response and earlier adverse cardiovascular outcomes. Novel pharmacological therapies aiming at limiting type I IFN response during or immediately after AMI might improve poor cardiovascular outcomes of patients with AMI with AVSc.


Assuntos
Doença da Artéria Coronariana , Infarto do Miocárdio , Humanos , Doença da Artéria Coronariana/patologia , Valva Aórtica/patologia , Transcriptoma , Esclerose/patologia , Estudos Transversais , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/genética , Infarto do Miocárdio/epidemiologia , Imunidade , Interferons
2.
Int J Mol Sci ; 25(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38256243

RESUMO

Amyloid deposition within stenotic aortic valves (AVs) also appears frequent in the absence of cardiac amyloidosis, but its clinical and pathophysiological relevance has not been investigated. We will elucidate the rate of isolated AV amyloid deposition and its potential clinical and pathophysiological significance in aortic stenosis (AS). In 130 patients without systemic and/or cardiac amyloidosis, we collected the explanted AVs during cardiac surgery: 57 patients with calcific AS and 73 patients with AV insufficiency (41 with AV sclerosis and 32 without, who were used as controls). Amyloid deposition was found in 21 AS valves (37%), 4 sclerotic AVs (10%), and none of the controls. Patients with and without isolated AV amyloid deposition had similar clinical and echocardiographic characteristics and survival rates. Isolated AV amyloid deposition was associated with higher degrees of AV fibrosis (p = 0.0082) and calcification (p < 0.0001). Immunohistochemistry analysis suggested serum amyloid A1 (SAA1), in addition to transthyretin (TTR), as the protein possibly involved in AV amyloid deposition. Circulating SAA1 levels were within the normal range in all groups, and no difference was observed in AS patients with and without AV amyloid deposition. In vitro, AV interstitial cells (VICs) were stimulated with interleukin (IL)-1ß which induced increased SAA1-mRNA both in the control VICs (+6.4 ± 0.5, p = 0.02) and the AS VICs (+7.6 ± 0.5, p = 0.008). In conclusion, isolated AV amyloid deposition is frequent in the context of AS, but it does not appear to have potential clinical relevance. Conversely, amyloid deposition within AV leaflets, probably promoted by local inflammation, could play a role in AS pathophysiology.


Assuntos
Amiloidose , Estenose da Valva Aórtica , Calcinose , Humanos , Catéteres , Calcificação Fisiológica , Interleucina-1beta
3.
Cardiovasc Diabetol ; 22(1): 23, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36721184

RESUMO

BACKGROUND: Epicardial adipose tissue (EAT) plays an important role in cardiometabolic risk. EAT is a modifiable risk factor and could be a potential therapeutic target for drugs that already show cardiovascular benefits. The aim of this study is to evaluate the effect of cardiometabolic drugs on EAT reduction. METHODS: A detailed search related to the effect on EAT reduction due to cardiometabolic drugs, such as glucagon-like peptide-1 receptor agonist (GLP-1 RA), sodium-glucose cotransporter-2 inhibitors (SGLT2-i), and statins was conducted according to PRISMA guidelines. Eighteen studies enrolling 1064 patients were included in the qualitative and quantitative analyses. RESULTS: All three analyzed drug classes, in particular GLP-1 RA, show a significant effect on EAT reduction (GLP-1 RA standardize mean difference (SMD) = - 1.005; p < 0.001; SGLT2-i SMD = - 0.552; p < 0.001, and statin SMD = - 0.195; p < 0.001). The sensitivity analysis showed that cardiometabolic drugs strongly benefit EAT thickness reduction, measured by ultrasound (overall SMD of - 0.663; 95%CI - 0.79, - 0.52; p < 0.001). Meta-regression analysis revealed younger age and higher BMI as significant effect modifiers of the association between cardiometabolic drugs and EAT reduction for both composite effect and effect on EAT thickness, (age Z: 3.99; p < 0.001 and Z: 1.97; p = 0.001, respectively; BMI Z: - 4.40; p < 0.001 and Z: - 2.85; p = 0.004, respectively). CONCLUSIONS: Cardiometabolic drugs show a significant beneficial effect on EAT reduction. GLP-1 RA was more effective than SGLT2-i, while statins had a rather mild effect. We believe that the most effective treatment with these drugs should target younger patients with high BMI.


Assuntos
Doenças Cardiovasculares , Inibidores de Hidroximetilglutaril-CoA Redutases , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/prevenção & controle , Peptídeo 1 Semelhante ao Glucagon , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Obesidade , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico
4.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36769209

RESUMO

In heart failure, the biological and clinical connection between abnormal iron homeostasis, myocardial function, and prognosis is known; however, the expression profiles of iron-linked genes both at myocardial tissue and single-cell level are not well defined. Through publicly available bulk and single-nucleus RNA sequencing (RNA-seq) datasets of left ventricle samples from adult non-failed (NF) and dilated cardiomyopathy (DCM) subjects, we aim to evaluate the altered iron metabolism in a diseased condition, at the whole cardiac tissue and single-cell level. From the bulk RNA-seq data, we found 223 iron-linked genes expressed at the myocardial tissue level and 44 differentially expressed between DCM and NF subjects. At the single-cell level, at least 18 iron-linked expressed genes were significantly regulated in DCM when compared to NF subjects. Specifically, the iron metabolism in DCM cardiomyocytes is altered at several levels, including: (1) imbalance of Fe3+ internalization (SCARA5 down-regulation) and reduction of internal conversion from Fe3+ to Fe2+ (STEAP3 down-regulation), (2) increase of iron consumption to produce hemoglobin (HBA1/2 up-regulation), (3) higher heme synthesis and externalization (ALAS2 and ABCG2 up-regulation), (4) lower cleavage of heme to Fe2+, biliverdin and carbon monoxide (HMOX2 down-regulation), and (5) positive regulation of hepcidin (BMP6 up-regulation).


Assuntos
Cardiomiopatia Dilatada , Insuficiência Cardíaca , Adulto , Humanos , Cardiomiopatia Dilatada/metabolismo , Miocárdio/metabolismo , Regulação para Baixo , Miócitos Cardíacos/metabolismo , Insuficiência Cardíaca/metabolismo , 5-Aminolevulinato Sintetase/genética , Receptores Depuradores Classe A/genética
5.
Int J Mol Sci ; 22(4)2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33672625

RESUMO

Mitral valve prolapse (MVP) associated with severe mitral regurgitation is a debilitating disease with no pharmacological therapies available. MicroRNAs (miRNA) represent an emerging class of circulating biomarkers that have never been evaluated in MVP human plasma. Our aim was to identify a possible miRNA signature that is able to discriminate MVP patients from healthy subjects (CTRL) and to shed light on the putative altered molecular pathways in MVP. We evaluated a plasma miRNA profile using Human MicroRNA Card A followed by real-time PCR validations. In addition, to assess the discriminative power of selected miRNAs, we implemented a machine learning analysis. MiRNA profiling and validations revealed that miR-140-3p, 150-5p, 210-3p, 451a, and 487a-3p were significantly upregulated in MVP, while miR-223-3p, 323a-3p, 340-5p, and 361-5p were significantly downregulated in MVP compared to CTRL (p ≤ 0.01). Functional analysis identified several biological processes possible linked to MVP. In addition, machine learning analysis correctly classified MVP patients from CTRL with high accuracy (0.93) and an area under the receiving operator characteristic curve (AUC) of 0.97. To the best of our knowledge, this is the first study performed on human plasma, showing a strong association between miRNAs and MVP. Thus, a circulating molecular signature could be used as a first-line, fast, and cheap screening tool for MVP identification.


Assuntos
MicroRNA Circulante/sangue , Insuficiência da Valva Mitral/sangue , Insuficiência da Valva Mitral/complicações , Prolapso da Valva Mitral/sangue , Prolapso da Valva Mitral/complicações , Estudos de Casos e Controles , Regulação para Baixo/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Insuficiência da Valva Mitral/genética , Prolapso da Valva Mitral/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Regulação para Cima/genética
6.
Int J Mol Sci ; 22(12)2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-34204756

RESUMO

Transcript sequencing is a crucial tool for gaining a deep understanding of biological processes in diagnostic and clinical medicine. Given their potential to study novel complex eukaryotic transcriptomes, long-read sequencing technologies are able to overcome some limitations of short-read RNA-Seq approaches. Oxford Nanopore Technologies (ONT) offers the ability to generate long-read sequencing data in real time via portable protein nanopore USB devices. This work aimed to provide the user with the number of reads that should be sequenced, through the ONT MinION platform, to reach the desired accuracy level for a human cell RNA study. We sequenced three cDNA libraries prepared from poly-adenosine RNA of human primary cardiac fibroblasts. Since the runs were comparable, they were combined in a total dataset of 48 million reads. Synthetic datasets with different sizes were generated starting from the total and analyzed in terms of the number of identified genes and their expression levels. As expected, an improved sensitivity was obtained, increasing the sequencing depth, particularly for the non-coding genes. The reliability of expression levels was assayed by (i) comparison with PCR quantifications of selected genes and (ii) by the implementation of a user-friendly multiplexing method in a single run.


Assuntos
Sequenciamento por Nanoporos , Células Cultivadas , Regulação da Expressão Gênica , Humanos , Fases de Leitura Aberta/genética , RNA-Seq
7.
Int J Mol Sci ; 22(16)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34445099

RESUMO

Diabetes mellitus (DM) is one of the most common and costly disorders that affect humans around the world. Recently, clinicians and scientists have focused their studies on the effects of glycemic variability (GV), which is especially associated with cardiovascular diseases. In healthy subjects, glycemia is a very stable parameter, while in poorly controlled DM patients, it oscillates greatly throughout the day and between days. Clinically, GV could be measured by different parameters, but there are no guidelines on standardized assessment. Nonetheless, DM patients with high GV experience worse cardiovascular disease outcomes. In vitro and in vivo studies showed that high GV causes several detrimental effects, such as increased oxidative stress, inflammation, and apoptosis linked to endothelial dysfunction. However, the evidence that treating GV is beneficial is still scanty. Clinical trials aiming to improve the diagnostic and prognostic accuracy of GV measurements correlated with cardiovascular outcomes are needed. The present review aims to evaluate the clinical link between high GV and cardiovascular diseases, taking into account the underlined biological mechanisms. A clear view of this challenge may be useful to standardize the clinical evaluation and to better identify treatments and strategies to counteract this DM aspect.


Assuntos
Doenças Cardiovasculares/etiologia , Complicações do Diabetes/complicações , Hiperglicemia/complicações , Animais , Glicemia/metabolismo , Doenças Cardiovasculares/metabolismo , Complicações do Diabetes/metabolismo , Diabetes Mellitus/metabolismo , Humanos , Hiperglicemia/metabolismo , Estresse Oxidativo
8.
Pharmacol Res ; 158: 104888, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32434054

RESUMO

Aortic valve stenosis (AS) is a pathological condition that affects about 3% of the population, representing the most common valve disease. The main clinical feature of AS is represented by the impaired leaflet motility, due to calcification, which leads to the left ventricular outflow tract obstruction during systole. The formation and accumulation of calcium nodules are driven by valve interstitial cells (VICs). Unfortunately, to date, the in vitro and in vivo studies were not sufficient to fully recapitulate all the pathological pathways involved in AS development, as well as to define a specific and effective pharmacological treatment for AS patients. Cyclophilin A (CyPA), the most important immunophilin and endogenous ligand of cyclosporine A (CsA), is strongly involved in several detrimental cardiovascular processes, such as calcification. To date, there are no data on the CyPA role in VIC-mediated calcification process of AS. Here, we aimed to identify the role of CyPA in AS by studying VIC calcification, in vitro. In this study, we found that (i) CyPA is up-regulated in stenotic valves of AS patients, (ii) pro-calcifying medium promotes CyPA secretion by VICs, (iii) in vitro treatment of VICs with exogenous CyPA strongly stimulates calcium deposition, and (iv) exogenous CyPA inhibition mediated by CsA analogue MM284 abolished in vitro calcium potential. Thus, CyPA represents a biological target that may act as a novel candidate in the detrimental AS development and its inhibition may provide a novel pharmacological approach for AS treatment.


Assuntos
Estenose da Valva Aórtica/tratamento farmacológico , Estenose da Valva Aórtica/cirurgia , Valva Aórtica/patologia , Calcinose/tratamento farmacológico , Calcinose/cirurgia , Ciclofilina A/antagonistas & inibidores , Ciclosporinas/farmacologia , Ciclosporinas/uso terapêutico , Idoso , Idoso de 80 Anos ou mais , Valva Aórtica/metabolismo , Valva Aórtica/cirurgia , Estenose da Valva Aórtica/metabolismo , Calcinose/metabolismo , Células Cultivadas , Ciclofilina A/metabolismo , Feminino , Humanos , Masculino , Resultado do Tratamento
9.
Int J Mol Sci ; 21(16)2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32781508

RESUMO

Calcific aortic valve disease (CAVD) is the most common valvular heart disease in developed countries predominantly affecting the elderly population therefore posing a large economic burden. It is a gradually progressive condition ranging from mild valve calcification and thickening, without the hemodynamic obstruction, to severe calcification impairing leaflet motion, known as aortic stenosis (AS). The progression of CAVD occurs over many years, and it is extremely variable among individuals. It is also associated with an increased risk of coronary events and mortality. The recent insights into the CAVD pathophysiology included an important role of sex. Accumulating evidence suggests that, in patients with CAVD, sex can determine important differences in the relationship between valvular calcification process, fibrosis, and aortic stenosis hemodynamic severity between men and women. Consequently, it has implications on the development of different valvular phenotypes, left ventricular hypertrophy, and cardiovascular outcomes in men and women. Along these lines, taking into account the sex-related differences in diagnosis, prognosis, and treatment outcomes is of profound importance. In this review, the sex-related differences in patients with CAVD, in terms of pathobiology, clinical phenotypes, and outcomes were discussed.


Assuntos
Estenose da Valva Aórtica/epidemiologia , Valva Aórtica/patologia , Calcinose/epidemiologia , Caracteres Sexuais , Animais , Estenose da Valva Aórtica/patologia , Calcinose/patologia , Feminino , Humanos , Hipertrofia Ventricular Esquerda/patologia , Masculino , Fenótipo , Transdução de Sinais , Resultado do Tratamento
10.
Int J Mol Sci ; 21(5)2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32155866

RESUMO

Diabetes mellitus comprises a group of carbohydrate metabolism disorders that share a common main feature of chronic hyperglycemia that results from defects of insulin secretion, insulin action, or both. Insulin is an important anabolic hormone, and its deficiency leads to various metabolic abnormalities in proteins, lipids, and carbohydrates. Atherosclerosis develops as a result of a multistep process ultimately leading to cardiovascular disease associated with high morbidity and mortality. Alteration of lipid metabolism is a risk factor and characteristic feature of atherosclerosis. Possible links between the two chronic disorders depending on altered metabolic pathways have been investigated in numerous studies. It was shown that both types of diabetes mellitus can actually induce atherosclerosis development or further accelerate its progression. Elevated glucose level, dyslipidemia, and other metabolic alterations that accompany the disease development are tightly involved in the pathogenesis of atherosclerosis at almost every step of the atherogenic process. Chronic inflammation is currently considered as one of the key factors in atherosclerosis development and is present starting from the earliest stages of the pathology initiation. It may also be regarded as one of the possible links between atherosclerosis and diabetes mellitus. However, the data available so far do not allow for developing effective anti-inflammatory therapeutic strategies that would stop atherosclerotic lesion progression or induce lesion reduction. In this review, we summarize the main aspects of diabetes mellitus that possibly affect the atherogenic process and its relationship with chronic inflammation. We also discuss the established pathophysiological features that link atherosclerosis and diabetes mellitus, such as oxidative stress, altered protein kinase signaling, and the role of certain miRNA and epigenetic modifications.


Assuntos
Aterosclerose/etiologia , Diabetes Mellitus/fisiopatologia , Glucose/metabolismo , Inflamação/complicações , Resistência à Insulina , Lipídeos/análise , Estresse Oxidativo , Animais , Aterosclerose/metabolismo , Aterosclerose/patologia , Humanos
11.
Semin Cancer Biol ; 52(Pt 1): 9-16, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29360504

RESUMO

The diagnostics and management of localized prostate cancer is complicated because of cancer heterogeneity and differentiated progression in various subgroups of patients. As a prostate cancer biomarker, FDA-approved detection assay for serum prostate specific antigen (PSA) and its derivatives are not potent enough to diagnose prostate cancer, especially high-grade disease (Gleason ≥7). To date, a collection of new biomarkers was developed. Some of these markers are superior for primary screening while others are particularly helpful for cancer risk stratification, detection of high-grade cancer, and prediction of adverse events. Two of those markers such as proPSA (a part of the Prostate Health Index (PHI)) and prostate specific antigen 3 (PCA3) (a part of the PCA3 Progensa test) were recently approved by FDA for clinical use. Other markers are not PDA-approved yet but are available from Clinical Laboratory Improvement Amendment (CLIA)-certified clinical laboratories. In this review, we characterize diagnostic performance of these markers and their diagnostic and prognostic utility for prostate cancer.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/metabolismo , Antígenos de Neoplasias/análise , Humanos , Masculino , Prognóstico , Antígeno Prostático Específico/análise , Precursores de Proteínas/análise , Sensibilidade e Especificidade
12.
J Mol Cell Cardiol ; 131: 146-154, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31026425

RESUMO

AIMS: Calcific aortic valve stenosis (CAVS) is the most frequent manifestation of aortic valve disease and the third leading cause of cardiovascular disease in the Western countries associated with significant morbidity and mortality. An active biological progression involving inflammation and oxidation leading to valve endothelial damage is considered a hallmark of the early stages of valve degeneration. However, tricuspid (TAV) and bicuspid (BAV) aortic valve deterioration are considered to differ only by shear stress. We hypothesized that endothelial cells (EC) derived from BAV and TAV patients have different miRNA expression patterns and thus distinct pathways could lead to endothelial damage in BAV than TAV patients. METHODS AND RESULTS: We isolated ECs from patients with bicuspid or tricuspid aortic valve, which underwent surgery due to CAVS. MiRNA expression profile by PCR revealed eight upregulated miRNAs between BAV and TAV ECs. Functional analysis identified that BAV ECs presented altered cellular response to oxidative stress and DNA damage stimulus via p53 and alteration in the intrinsic apoptotic signaling pathway. GPX3 and SRXN1 mRNA were express at lower levels in BAV compared to TAV ECs, leading to an increment of DNA double-strand breaks. BAV ECs had a sustained apoptosis activation when compared to TAV ECs. This difference was exacerbated by oxidative stress stimulus leading to a reduced survival rate but completely reverted by miR-328-3p inhibition. CONCLUSION: The present data showed molecular differences in oxidative stress susceptibility, DNA damage magnitude, and apoptosis induction between ECs derived from BAV and TAV patients.


Assuntos
Valva Aórtica/anormalidades , MicroRNAs/metabolismo , Valva Tricúspide/citologia , Idoso , Valva Aórtica/citologia , Doença da Válvula Aórtica Bicúspide , Western Blotting , Células Cultivadas , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Citometria de Fluxo , Doenças das Valvas Cardíacas , Humanos , Pessoa de Meia-Idade , Estresse Oxidativo/genética , Estresse Oxidativo/fisiologia , Reação em Cadeia da Polimerase em Tempo Real
13.
J Mol Cell Cardiol ; 123: 159-167, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30172754

RESUMO

Matrix metalloproteinases (MMPs) is a family of Zn2+ endopeptidases that process various components of the extracellular matrix. These enzymes are also involved in activation and inhibition of signaling cascades through proteolytic cleavage of surface receptors. Moreover, MMPs play a key role in tissue remodeling and and repair. Dysregulation of MMPs is observed in patholofgical conditions, including atherosclerosis, which is associated with hyperactivation of MMPs, aberrant tissue remodeling and neovascularization of the growing atherosclerotic plaques. This makes MMPs interesting therapeutic targets that can be employed for developing novel therapies to treat atherosclerosis and its complications. Currently, a growing number of synthetic MMP inhibitors is available. In this review, we will discuss the role of these enzymes in atherosclerosis pathology and the ways of their pothential therapeutic use.


Assuntos
Artérias/metabolismo , Aterosclerose/etiologia , Aterosclerose/metabolismo , Metaloproteinases da Matriz/metabolismo , Remodelação Vascular , Animais , Artérias/patologia , Aterosclerose/patologia , Biomarcadores , Citocinas/metabolismo , Endotélio/metabolismo , Humanos , Hipóxia/metabolismo , Mediadores da Inflamação/metabolismo , Neovascularização Patológica/metabolismo , Estresse Oxidativo , Placa Aterosclerótica/etiologia , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Espécies Reativas de Oxigênio/metabolismo , Trombose
14.
J Cell Mol Med ; 22(3): 1366-1382, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29364567

RESUMO

Monocytosis and neutrophilia are frequent events in atherosclerosis. These phenomena arise from the increased proliferation of hematopoietic stem and multipotential progenitor cells (HSPCs) and HSPC mobilization from the bone marrow to other immune organs and circulation. High cholesterol and inflammatory signals promote HSPC proliferation and preferential differentiation to the myeloid precursors (i.e., myelopoiesis) that than give rise to pro-inflammatory immune cells. These cells accumulate in the plaques thereby enhancing vascular inflammation and contributing to further lesion progression. Studies in animal models of atherosclerosis showed that manipulation with HSPC proliferation and differentiation through the activation of LXR-dependent mechanisms and restoration of cholesterol efflux may have a significant therapeutic potential.


Assuntos
Aterosclerose/imunologia , Colesterol/imunologia , Hipercolesterolemia/imunologia , Monócitos/imunologia , Neutrófilos/imunologia , Placa Aterosclerótica/imunologia , Animais , Aterosclerose/genética , Aterosclerose/patologia , Medula Óssea/imunologia , Medula Óssea/patologia , Diferenciação Celular , Proliferação de Células , Modelos Animais de Doenças , Regulação da Expressão Gênica , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/patologia , Humanos , Hipercolesterolemia/genética , Hipercolesterolemia/patologia , Receptores X do Fígado/genética , Receptores X do Fígado/imunologia , Camundongos , Monócitos/patologia , Células-Tronco Multipotentes/imunologia , Células-Tronco Multipotentes/patologia , Neutrófilos/patologia , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/deficiência , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/imunologia , Placa Aterosclerótica/genética , Placa Aterosclerótica/patologia
15.
Pharmacol Res ; 136: 74-82, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30149054

RESUMO

Calcific aortic valve disease (CAVD) is the most common valvular disorder in the elderly, with the incidence of 3% in general population of Western countries. The initial phase of CAVD is characterized by leaflet thickening and possible spotty calcification (i.e. aortic valve sclerosis (AVSc)), while advanced stages have leaflets structure degeneration (i.e. aortic valve stenosis (AS)). The pathological cellular and molecular mechanisms, involved in CAVD, are extracellular matrix degradation, aberrant matrix deposition, fibrosis, mineralization, inflammation, lipid accumulation, and neo-angiogenesis. CAVD clinical risk shares considerable overlap with those of atherosclerosis and they include hypertension, smoking habits, and hyperlipidemia. Unfortunately, surgical aortic valve replacement and transcatheter aortic valve implantation are the only available treatments when the disease become severe and symptoms occur. Indeed, no approved pharmacological approach is available for CAVD patients. In this review, we describe the current literature evidence on possible future therapeutic targets for this debilitating and fatal disease such as PCSK9, P2Y2 receptor, cadherin 11, and DDP-4.


Assuntos
Valva Aórtica/patologia , Calcinose/tratamento farmacológico , Doenças das Valvas Cardíacas/tratamento farmacológico , Animais , Calcinose/metabolismo , Calcinose/prevenção & controle , Genômica , Doenças das Valvas Cardíacas/metabolismo , Doenças das Valvas Cardíacas/prevenção & controle , Humanos , Hipolipemiantes/uso terapêutico
16.
Exp Mol Pathol ; 104(2): 114-124, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29378168

RESUMO

Chronic inflammation is a central pathogenic mechanism of atherosclerosis induction and progression. Vascular inflammation is associated with accelerated onset of late atherosclerosis complications. Atherosclerosis-related inflammation is mediated by a complex cocktail of pro-inflammatory cytokines, chemokines, bioactive lipids, and adhesion molecules, and blocking the key pro-atherogenic inflammatory mechanisms can be beneficial for treatment of atherosclerosis. Therapeutic agents that specifically target some of the atherosclerosis-related inflammatory mechanisms have been evaluated in preclinical and clinical studies. The most promising anti-inflammatory compounds for treatment of atherosclerosis include non-specific anti-inflammatory drugs, phospholipase inhibitors, blockers of major inflammatory cytokines, leukotrienes, adhesion molecules, and pro-inflammatory signaling pathways, such as CCL2-CCR2 axis or p38 MAPK pathway. Ongoing studies attempt evaluating therapeutic utility of these anti-inflammatory drugs for treatment of atherosclerosis. The obtained results are important for our understanding of atherosclerosis-related inflammatory mechanisms and for designing randomized controlled studies assessing the effect of specific anti-inflammatory strategies on cardiovascular outcomes.


Assuntos
Anti-Inflamatórios/farmacologia , Aterosclerose/tratamento farmacológico , Terapia de Alvo Molecular/métodos , Animais , Anti-Inflamatórios/uso terapêutico , Aspirina/farmacologia , Aterosclerose/metabolismo , Colchicina/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Citocinas/metabolismo , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Leucotrienos/metabolismo , Metotrexato/farmacologia , Inibidores de Fosfolipase A2/farmacologia , Transdução de Sinais/efeitos dos fármacos
17.
RNA Biol ; 15(10): 1268-1272, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30252594

RESUMO

Circulating microRNAs (miRNAs) are considered as reliable candidates for biomarker discovery. RNA-Sequencing has become the most suitable technique to accurately quantify the miRNAome. However, RNA-Sequencing relies on several technical passages before reaching the final-end. HTG EdgeSeq technology, thanks to the abrogation of RNA extraction step, allows productivity enhancement by reducing the number of hands-on steps, the time for sample preparation and, therefore, the costs. We found a strong correlation between qPCR and dPCR with HTG (Pearson's coefficient of 0.93 and 0.94, respectively). In conclusion, we showed that HTG EdgeSeq, performed on human plasma specimens without RNA extraction, is reliable, allows the simultaneous screening of more than 2,000 miRNAs, and thus, it could be applied to biomarker discovery in large cohorts.


Assuntos
Biomarcadores/sangue , MicroRNA Circulante/sangue , MicroRNAs/sangue , Análise de Sequência de RNA , MicroRNA Circulante/genética , Humanos , MicroRNAs/genética
18.
Lab Invest ; 97(1): 4-13, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27869795

RESUMO

CD68 is a heavily glycosylated glycoprotein that is highly expressed in macrophages and other mononuclear phagocytes. Traditionally, CD68 is exploited as a valuable cytochemical marker to immunostain monocyte/macrophages in the histochemical analysis of inflamed tissues, tumor tissues, and other immunohistopathological applications. CD68 alone or in combination with other cell markers of tumor-associated macrophages showed a good predictive value as a prognostic marker of survival in cancer patients. Lowression of CD68 was found in the lymphoid cells, non-hematopoietic cells (fibroblasts, endothelial cells, etc), and tumor cells. Cell-specific CD68 expression and differentiated expression levels are determined by the complex interplay between transcription factors, regulatory transcriptional elements, and epigenetic factors. Human CD68 and its mouse ortholog macrosialin belong to the family of LAMP proteins located in the lysosomal membrane and share many structural similarities such as the presence of the LAMP-like domain. Except for a second LAMP-like domain present in LAMPs, CD68/microsialin has a highly glycosylated mucin-like domain involved in ligand binding. CD68 has been shown to bind oxLDL, phosphatidylserine, apoptotic cells and serve as a receptor for malaria sporozoite in liver infection. CD68 is mainly located in the endosomal/lysosomal compartment but can rapidly shuttle to the cell surface. However, the role of CD68 as a scavenger receptor remains to be confirmed. It seems that CD68 is not involved in binding bacterial/viral pathogens, innate, inflammatory or humoral immune responses, although it may potentially be involved in antigen processing/presentation. CD68 could be functionally important in osteoclasts since its deletion leads to reduced bone resorption capacity. The role of CD68 in atherosclerosis is contradictory.


Assuntos
Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Biomarcadores/metabolismo , Macrófagos/metabolismo , Neoplasias/metabolismo , Sequência de Aminoácidos , Animais , Antígenos CD/química , Antígenos CD/genética , Antígenos de Diferenciação Mielomonocítica/química , Antígenos de Diferenciação Mielomonocítica/genética , Sítios de Ligação/genética , Humanos , Imuno-Histoquímica , Inflamação/genética , Inflamação/metabolismo , Lipoproteínas LDL/metabolismo , Lisossomos/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Modelos Moleculares , Neoplasias/genética , Neoplasias/patologia , Prognóstico , Ligação Proteica , Domínios Proteicos
19.
Exp Mol Pathol ; 102(1): 138-145, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28108216

RESUMO

Studies in non-rodent and murine models showed that atherosclerosis can be reversed. Atherosclerosis progression induced by high-fat or cholesterol-rich diet can be reduced and reversed to plaque regression after switching to a normal diet or through administration of lipid-lowering agents. The similar process should exist in humans after implementation of lipid-lowering therapy and as a result of targeting of small rupture-prone plaques that are major contributors for acute atherosclerotic complications. Lowering of low density lipoprotein (LDL) cholesterol and the activation of reverse cholesterol transport lead to a decline in foam cell content, to the depletion of plaque lipid reservoirs, a decrease in lesional macrophage numbers through the activation of macrophage emigration and, probably, apoptosis, dampening plaque inflammation, and the induction of anti-inflammatory macrophages involved in clearance of the necrotic core and plaque healing. By contrast, plaque regression is characterized by opposite events, leading to the retention of atherogenic LDL and oxidized LDL particles in the plaque, an increased flux of monocytes, the immobilization of macrophages in the intimal vascular tissues, and the propagation of intraplaque inflammation. Transfer of various apolipoprotein (apo) genes to spontaneously hypercholesterolemic mice deficient for either apoE or LDL receptor and, especially, the implementation of the transplantation murine model allowed studying molecular mechanisms of atherosclerotic regression, associated with the depletion of atherogenic lipids in the plaque, egress of macrophages and phenotypic switch of macrophages from the proinflammatory M1 to the anti-inflammatory M2.


Assuntos
Aterosclerose/prevenção & controle , Aterosclerose/terapia , Dieta com Restrição de Gorduras/métodos , Hipolipemiantes/administração & dosagem , Animais , Aterosclerose/metabolismo , Colesterol/metabolismo , Células Espumosas/metabolismo , Humanos , Camundongos , Modelos Biológicos , Primatas , Coelhos , Suínos
20.
Int J Mol Sci ; 18(7)2017 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-28714932

RESUMO

Thrombospondins (TSPs) represent extracellular matrix (ECM) proteins belonging to the TSP family that comprises five members. All TSPs have a complex multidomain structure that permits the interaction with various partners including other ECM proteins, cytokines, receptors, growth factors, etc. Among TSPs, TSP1, TSP2, and TSP4 are the most studied and functionally tested. TSP1 possesses anti-angiogenic activity and is able to activate transforming growth factor (TGF)-ß, a potent profibrotic and anti-inflammatory factor. Both TSP2 and TSP4 are implicated in the control of ECM composition in hypertrophic hearts. TSP1, TSP2, and TSP4 also influence cardiac remodeling by affecting collagen production, activity of matrix metalloproteinases and TGF-ß signaling, myofibroblast differentiation, cardiomyocyte apoptosis, and stretch-mediated enhancement of myocardial contraction. The development and evaluation of TSP-deficient animal models provided an option to assess the contribution of TSPs to cardiovascular pathology such as (myocardial infarction) MI, cardiac hypertrophy, heart failure, atherosclerosis, and aortic valve stenosis. Targeting of TSPs has a significant therapeutic value for treatment of cardiovascular disease. The activation of cardiac TSP signaling in stress and pressure overload may be therefore beneficial.


Assuntos
Doenças Cardiovasculares/metabolismo , Trombospondinas/metabolismo , Apoptose , Doenças Cardiovasculares/patologia , Diferenciação Celular , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Humanos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Miofibroblastos/citologia , Miofibroblastos/metabolismo , Conformação Proteica , Trombospondinas/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa