Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 61(33): 13022-13033, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35930806

RESUMO

Ionizing radiation-induced paramagnetic defects in calcified tissues like tooth enamel are indicators of irradiation dose. Hydroxyapatite (HA), the principal constituent in these materials, incorporates a variety of anions (CO32-, F-, Cl-, and SiO44-) and cations (Mn2+, Li+, Cu2+, Fe3+, Mg2+, and Na+) that directly or indirectly contribute to the formation of stable paramagnetic centers upon irradiation. Here, we used an underexploited synthesis method based on the ambient temperature setting reaction of a self-hardening calcium phosphate cement (CPC) to create carbonate-containing hydroxyapatite (CHA) and investigate its paramagnetic properties following γ-irradiation. Powder X-ray diffraction and IR spectroscopic characterization of the hardened CHA samples indicate the formation of pure B-type CHA cement. CHA samples exposed to γ-radiation doses ranging from 1 Gy to 150 kGy exhibited an electron paramagnetic resonance (EPR) signal from an orthorhombic CO2•- free radical. At γ-radiation doses from 30 to 150 kGy, a second signal emerged that is assigned to the CO3•- free radical. We observed that the formation of this second species is dose-dependent, which provided a means to extend the useful dynamic range of irradiated CHA to doses >30 kGy. These results indicate that CHA synthesized via a CPC cement is a promising substrate for EPR-based dosimetry. Further studies on the CHA cement are underway to determine the suitability of these materials for a range of biological and industrial dosimetry applications.


Assuntos
Hidroxiapatitas , Sódio , Carbonatos , Durapatita , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Radicais Livres
2.
Appl Surf Sci ; 378: 301-307, 2016 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-27397949

RESUMO

Low temperature Si epitaxy has become increasingly important due to its critical role in the encapsulation and performance of buried nanoscale dopant devices. We demonstrate epitaxial growth up to nominally 25 nm, at 250°C, with analysis at successive growth steps using STM and cross section TEM to reveal the nature and quality of the epitaxial growth. STM images indicate that growth morphology of both Si on Si and Si on H-terminated Si (H: Si) is epitaxial in nature at temperatures as low as 250 °C. For Si on Si growth at 250 °C, we show that the Si epitaxial growth front maintains a constant morphology after reaching a specific thickness threshold. Although the in-plane mobility of silicon is affected on the H: Si surface due to the presence of H atoms during initial sub-monolayer growth, STM images reveal long range order and demonstrate that growth proceeds by epitaxial island growth albeit with noticeable surface roughening.

3.
Phys Rev Appl ; 112019.
Artigo em Inglês | MEDLINE | ID: mdl-31579257

RESUMO

Scanning tunneling microscopy (STM) enables the fabrication of two-dimensional δ-doped structures in Si with atomistic precision, with applications from tunnel field-effect transistors to qubits. The combination of a very small contact area and the restrictive thermal budget necessary to maintain the integrity of the δ layer make developing a robust electrical contact method a significant challenge to realizing the potential of atomically precise devices. We demonstrate a method for electrical contact using Pd2Si formed at the temperature of silicon overgrowth (250 °C), minimizing the diffusive impact on the δ layer. We use the transfer length method to show our Pd2Si contacts have very high yield (99.7% +0.2% -1.5%) and low resistivity (272±41Ωµm) in contacting mesa-etched Si:P δ layers. We also present three terminal measurements of low contact resistance (<1 kΩ) to devices written by STM hydrogen depassivation lithography with similarly high yield (100% +0% -3.2%).

4.
Phys Rev Mater ; 1(2)2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28890947

RESUMO

We report a rectangular charge density wave (CDW) phase in strained 1T-VSe2 thin films synthesized by molecular beam epitaxy on c-sapphire substrates. The observed CDW structure exhibits an unconventional rectangular 4a×√3a periodicity, as opposed to the previously reported hexagonal 4a×4a structure in bulk crystals and exfoliated thin layered samples. Tunneling spectroscopy shows a strong modulation of the local density of states of the same 4a×√3a CDW periodicity and an energy gap of 2ΔCDW = (9.1 ± 0.1) meV. The CDW energy gap evolves into a full gap at temperatures below 500 mK, indicating a transition to an insulating phase at ultra-low temperatures. First-principles calculations confirm the stability of both 4a×4a and 4a×√3a structures arising from soft modes in the phonon dispersion. The unconventional structure becomes preferred in the presence of strain, in agreement with experimental findings.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa