Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(5): 1597-1602, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30642961

RESUMO

Influenza is a yearly threat to global public health. Rapid changes in influenza surface proteins resulting from antigenic drift and shift events make it difficult to readily identify antibodies with broadly neutralizing activity against different influenza subtypes with high frequency, specifically antibodies targeting the receptor binding domain (RBD) on influenza HA protein. We developed an optimized computational design method that is able to optimize an antibody for recognition of large panels of antigens. To demonstrate the utility of this multistate design method, we used it to redesign an antiinfluenza antibody against a large panel of more than 500 seasonal HA antigens of the H1 subtype. As a proof of concept, we tested this method on a variety of known antiinfluenza antibodies and identified those that could be improved computationally. We generated redesigned variants of antibody C05 to the HA RBD and experimentally characterized variants that exhibited improved breadth and affinity against our panel. C05 mutants exhibited improved affinity for three of the subtypes used in design by stabilizing the CDRH3 loop and creating favorable electrostatic interactions with the antigen. These mutants possess increased breadth and affinity of binding while maintaining high-affinity binding to existing targets, surpassing a major limitation up to this point.


Assuntos
Anticorpos Antivirais/imunologia , Vírus da Influenza A/imunologia , Influenza Humana/imunologia , Sequência de Aminoácidos , Anticorpos Neutralizantes/imunologia , Cristalografia por Raios X/métodos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Estações do Ano
2.
J Biol Chem ; 291(27): 14095-14108, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27129207

RESUMO

The thyroid stimulating hormone receptor (TSHR) is a G protein-coupled receptor (GPCR) with a characteristic large extracellular domain (ECD). TSHR activation is initiated by binding of the hormone ligand TSH to the ECD. How the extracellular binding event triggers the conformational changes in the transmembrane domain (TMD) necessary for intracellular G protein activation is poorly understood. To gain insight in this process, the knowledge on the relative positioning of ECD and TMD and the conformation of the linker region at the interface of ECD and TMD are of particular importance. To generate a structural model for the TSHR we applied an integrated structural biology approach combining computational techniques with experimental data. Chemical cross-linking followed by mass spectrometry yielded 17 unique distance restraints within the ECD of the TSHR, its ligand TSH, and the hormone-receptor complex. These structural restraints generally confirm the expected binding mode of TSH to the ECD as well as the general fold of the domains and were used to guide homology modeling of the ECD. Functional characterization of TSHR mutants confirms the previously suggested close proximity of Ser-281 and Ile-486 within the TSHR. Rigidifying this contact permanently with a disulfide bridge disrupts ligand-induced receptor activation and indicates that rearrangement of the ECD/extracellular loop 1 (ECL1) interface is a critical step in receptor activation. The experimentally verified contact of Ser-281 (ECD) and Ile-486 (TMD) was subsequently utilized in docking homology models of the ECD and the TMD to create a full-length model of a glycoprotein hormone receptor.


Assuntos
Receptores da Tireotropina/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Glicosilação , Humanos , Espectrometria de Massas , Modelos Moleculares , Mutação , Proteólise , Receptores da Tireotropina/química , Receptores da Tireotropina/genética , Ressonância de Plasmônio de Superfície
3.
Biochim Biophys Acta ; 1860(10): 2169-77, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27180175

RESUMO

BACKGROUND: This study aimed to investigate the prolyl and lysine hydroxylation in elastin from different species and tissues. METHODS: Enzymatic digests of elastin samples from human, cattle, pig and chicken were analyzed using mass spectrometry and bioinformatics tools. RESULTS: It was confirmed at the protein level that elastin does not contain hydroxylated lysine residues regardless of the species. In contrast, prolyl hydroxylation sites were identified in all elastin samples. Moreover, the analysis of the residues adjacent to prolines allowed the determination of the substrate site preferences of prolyl 4-hydroxylase. It was found that elastins from all analyzed species contain hydroxyproline and that at least 20%-24% of all proline residues were partially hydroxylated. Determination of the hydroxylation degrees of specific proline residues revealed that prolyl hydroxylation depends on both the species and the tissue, however, is independent of age. The fact that the highest hydroxylation degrees of proline residues were found for elastin from the intervertebral disc and knowledge of elastin arrangement in this tissue suggest that hydroxylation plays a biomechanical role. Interestingly, a proline-rich domain of tropoelastin (domain 24), which contains several repeats of bioactive motifs, does not show any hydroxyproline residues in the mammals studied. CONCLUSIONS: The results show that prolyl hydroxylation is not a coincidental feature and may contribute to the adaptation of the properties of elastin to meet the functional requirements of different tissues. GENERAL SIGNIFICANCE: The study for the first time shows that prolyl hydroxylation is highly regulated in elastin.


Assuntos
Colágeno/metabolismo , Elastina/metabolismo , Hidroxilação/genética , Prolina/metabolismo , Prolil Hidroxilases/química , Animais , Bovinos , Galinhas , Colágeno/genética , Elastina/genética , Humanos , Lisina/química , Lisina/metabolismo , Especificidade de Órgãos , Prolil Hidroxilases/genética , Processamento de Proteína Pós-Traducional/genética , Suínos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa