Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 16(32): 17295-304, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-25019223

RESUMO

A two-dimensional porous coordination polymer (NH4)2{HOOC(CH2)4COOH}[Zn2(C2O4)3] (abbreviated as (NH4)2(adp)[Zn2(ox)3] (adp = adipic acid, ox = oxalate)), which accommodates water molecules between the [Zn2(ox)3] layers, is highly remarked as a new type of crystalline proton conductor. In order to investigate its phase behavior and the proton conducting mechanism, we have performed adiabatic calorimetry, neutron diffraction, and quasi-elastic neutron scattering experiments on a fully hydrated sample (NH4)2(adp)[Zn2(ox)3]·3H2O with the highest proton conductivity (8 × 10(-3) S cm(-1), 25 °C, 98% RH). Its isostructural derivative K2(adp)[Zn2(ox)3]·3H2O was also measured to investigate the role of ammonium ions. (NH4)2(adp)[Zn2(ox)3]·3H2O and K2(adp)[Zn2(ox)3]·3H2O exhibit higher order transitions at 86 K and 138 K, respectively. From the magnitude of the transition entropy, the former is of an order-disorder type while the latter is of a displacive type. (NH4)2(adp)[Zn2(ox)3]·3H2O has four Debye-type relaxations and K2(adp)[Zn2(ox)3]·3H2O has two similar relaxations above each transition temperature. The two relaxations of (NH4)2(adp)[Zn2(ox)3]·3H2O with very small activation energies (ΔEa < 5 kJ mol(-1)) are due to the rotational motions of ammonium ions and play important roles in the proton conduction mechanism. It was also found that the protons in (NH4)2(adp)[Zn2(ox)3]·3H2O are carried through a Grotthuss mechanism. We present a discussion on the proton conducting mechanism based on the present structural and dynamical information.

2.
J Phys Condens Matter ; 27(10): 105101, 2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25627639

RESUMO

Heat capacities and spontaneous enthalpy-relaxation effects of the benzene confined in silica MCM-41 and SBA-15 pores with uniform diameters were measured by high-precision adiabatic calorimetry. The fusion temperatures and fusion enthalpies determined were compared with the literature results of benzene confined within pores of CPG glasses. It was confirmed, from the observed spontaneous heat-release or -absorption effects, that there exists a non-crystallizing amorphous component of confined benzene, as reported previously. The pore-diameter dependence of fusion enthalpy observed was inconsistent with the previously proposed model which suggested that the non-crystallizing amorphous component is located on the pore wall in the form of a shell-like structure of a few nm in thickness. A very slow relaxation process corresponding to a translational-diffusion motion of molecule was observed, indicating that the benzene fills the pores incompletely along the pore channel. In addition, we found that the fusion enthalpy as a function of inverse pore-diameter dependence decreases steeply in the range of 60-10 nm in diameter while gradually in the range around 5 nm.

3.
J Phys Chem B ; 115(48): 14023-9, 2011 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-21853989

RESUMO

At what temperature between 136 and 165 K the glass transition of water occurs is still controversial, while the crystallization of water prevents the determination. To confine water in nanopores stabilizes its liquid state down to low temperatures. Heat capacities and enthalpy relaxation effects of the water confined within MCM-41 nanopores with diameters in the range 1.5-5.0 nm were measured in this work by using adiabatic calorimetry. No fusion of the confined water was detected up to 2.0 nm, part of the water exhibited fusion in 2.1 nm pores, and the whole internal water which excludes the molecules interacting with the pore-wall atoms crystallized within pores with diameter of 2.3 nm and above. A glass transition of the internal water occurred at a temperature T(g) = 160-165 K for pore diameters in the range 1.5-2.0 nm and at 205-210 K for diameters of 2.0 and 2.1 nm; thus, the T(g) jumped from 165 to 205 K at 2.0 nm. The jump is connected to the development of hydrogen-bond network to a more complete one as the diameter is increased, and is conjectured as caused by the increase in the number, from three to four, of hydrogen bonds formed by each molecule. These imply that the glass transition of bulk water occurs at 210 K, which is much higher than 136 or 165 K debated so far.

4.
J Phys Condens Matter ; 22(32): 325103, 2010 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-21386485

RESUMO

Enthalpy relaxation processes proceeding in ethylene glycol (EG) aqueous solutions [(EG)(x)(H(2)O)(1 - x)] within silica-gel nanopores were studied by adiabatic calorimetry. While the x = 0.25 solution within pores with diameter of 52 nm showed a glass transition at T(g) = 139 K, ageing of the solution at 160 K caused a phase separation to reveal glass transitions at T(g) = 145 and 160 K for EG-rich and water-rich regions, respectively: the water molecules are understood to form a more developed hydrogen-bond network, and consequently force the EG molecules in between the water-rich regions. The T(g) = 160 K is in good agreement with the T(g) value of the internal (not interfacial) water confined within pores with thickness of 1.1 nm. The ageing further remarkably diminished the T(g) = 115 K glass transition. This indicates that, while the molecules responsible for the glass transition are the mobile water ones forming a lower number of hydrogen bonds than four, the fraction of such water molecules is reduced in association with the development of the network and the glass transition is absent in bulk pure water. When the same x = 0.25 solution was confined within 1.1- and 12 nm pores, the water molecules developed a hydrogen-bond network in the pore centre due to the presence of the pore wall and pushed the EG molecules onto the pore surface even at higher temperatures: the water-rich region gave T(g) = 155 K close to 160 K. It is concluded that the hydrogen-bond network inherent to water structure is developed/collapsed remarkably in the range near x = 0; consequently, the composition dependence of T(g) in the bulk system deviates sharply in the range from the Gordon-Taylor empirical law followed for large x > 0.2.


Assuntos
Etilenoglicol/química , Vidro/química , Soluções/química , Água/química , Géis/química , Ligação de Hidrogênio , Nanoporos/ultraestrutura , Transição de Fase , Dióxido de Silício/química , Temperatura de Transição
5.
J Phys Condens Matter ; 22(36): 365105, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21386533

RESUMO

Glass transition behaviors of dilute aqueous solutions are currently unclear because the water crystallizes immediately below the fusion temperatures to prevent the determination. The behaviors of methanol aqueous solutions [(CH(3)OH)(x)(H(2)O)(1 - x)] were studied here by confining the solutions within silica-gel pores and following the enthalpy relaxation associated with the glass transitions by adiabatic calorimetry. The dilution of the solutions in the composition range x < 0.3 brought both abrupt increase in the glass transition temperature T(g) as referred to the composition dependence expected from the behavior in x > 0.3 and appearance of a new glass transition at around 115 K. It was conjectured from the results that a hydrogen-bond network inherent to water starts to develop at around x = 0.3, and that molecules on the pore wall cannot join the network by forming tetrahedrally extended hydrogen-bonds so that they should constitute a mobile layer as an interfacial one. Such a special layer is understood as absent above x > 0.3, indicating that no network structure inherent to water is developed in the solutions.

6.
J Phys Chem B ; 114(44): 13940-3, 2010 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-20961142

RESUMO

How low-temperature water develops the formation of strong hydrogen bonds with some network structure is still open to a question. Heat capacities of the water confined within silica MCM-41 nanopores with different diameters in the range 1.7-4.2 nm were measured by adiabatic calorimetry. They revealed a hump with its maximum at 233 and 240 K for ordinary and heavy water, respectively. The maximum temperatures were essentially independent of the pore diameter, whereas the maximum values increased only in proportion to the fraction of the internal water molecules within the pores. It was concluded that the manner in which the hydrogen-bond formation progresses in bulk water is essentially the same as that in nanopore water and that strong hydrogen bonds are formed on cooling by arranging the neighboring water molecules at tetrahedral positions but keeping their network structure irregular to make striking contrast with ice structure.

7.
Chem Asian J ; 2(4): 514-20, 2007 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-17441189

RESUMO

The dynamic properties of water confined within nanospaces are of interest given that such water plays important roles in geological and biological systems. The enthalpy-relaxation properties of ordinary and heavy water confined within silica-gel voids of 1.1, 6, 12, and 52 nm in average diameter were examined by adiabatic calorimetry. Most of the water was found to crystallize within the pores above about 2 nm in diameter but to remain in the liquid state down to 80 K within the pores less than about 1.6 nm in diameter. Only one glass transition was observed, at T(g) = 119, 124, and 132 K for ordinary water and T(g) = 125, 130, and 139 K for heavy water, in the 6-, 12-, and 52-nm diameter pores, respectively. On the other hand, two glass transitions were observed at T(g) = 115 and 160 K for ordinary water and T(g) = 118 and 165 K for heavy water in the 1.1-nm pores. Interfacial water molecules on the pore wall, which remain in the noncrystalline state in each case, were interpreted to be responsible for the glass transitions in the region 115-139 K, and internal water molecules, surrounded only by water molecules in the liquid state, are responsible for those at 160 or 165 K in the case of the 1.1-nm pores. It is suggested that the glass transition of bulk supercooled water takes place potentially at 160 K or above due to the development of an energetically more stable hydrogen-bonding network of water molecules at low temperatures.


Assuntos
Óxido de Deutério , Vidro/química , Dióxido de Silício , Calorimetria , Conformação Molecular , Nanotecnologia/métodos , Nitrogênio , Sílica Gel , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa