Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Fly (Austin) ; 13(1-4): 51-64, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31401934

RESUMO

Animal terminalia represent some of the most diverse and rapidly evolving structures in the animal kingdom, and for this reason have been a mainstay in the taxonomic description of species. The terminalia of Drosophila melanogaster, with its wide range of experimental tools, have recently become the focus of increased interest in the fields of development, evolution, and behavior. However, studies from different disciplines have often used discrepant terminologies for the same anatomical structures. Consequently, the terminology of genital parts has become a barrier to integrating results from different fields, rendering it difficult to determine what parts are being referenced. We formed a consortium of researchers studying the genitalia of D. melanogaster to help establish a set of naming conventions. Here, we present a detailed visual anatomy of male genital parts, including a list of synonymous terms, and suggest practices to avoid confusion when referring to anatomical parts in future studies. The goal of this effort is to facilitate interdisciplinary communication and help newcomers orient themselves within the exciting field of Drosophila genitalia.


Assuntos
Drosophila melanogaster/anatomia & histologia , Genitália Masculina/anatomia & histologia , Terminologia como Assunto , Animais , Masculino
2.
Curr Biol ; 28(21): 3450-3457.e13, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30344115

RESUMO

Diverse traits often covary between species [1-3]. The possibility that a single mutation could contribute to the evolution of several characters between species [3] is rarely investigated as relatively few cases are dissected at the nucleotide level. Drosophila santomea has evolved additional sex comb sensory teeth on its legs and has lost two sensory bristles on its genitalia. We present evidence that a single nucleotide substitution in an enhancer of the scute gene contributes to both changes. The mutation alters a binding site for the Hox protein Abdominal-B in the developing genitalia, leading to bristle loss, and for another factor in the developing leg, leading to bristle gain. Our study suggests that morphological evolution between species can occur through a single nucleotide change affecting several sexually dimorphic traits. VIDEO ABSTRACT.


Assuntos
Evolução Biológica , Proteínas de Drosophila/genética , Drosophila/anatomia & histologia , Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Animais , Sítios de Ligação , Proteínas de Drosophila/metabolismo , Evolução Molecular , Genitália Masculina/anatomia & histologia , Proteínas de Homeodomínio/metabolismo , Masculino , Mutação , Nucleotídeos/genética
3.
Acta Biol Hung ; 58 Suppl: 51-64, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18297794

RESUMO

The anaphase promoting complex or cyclosome (APC/C) is a large protein complex with an ubiquitin ligase activity which specifically targets mitotic regulatory proteins for proteasomal degradation. The APC/C contains at least 11 subunits, most of which are evolutionarily conserved from yeasts to humans. We have isolated and characterized mutant alleles of the gene that codes for the APC10/Doc1 subunit of the Drosophila APC/C. Loss of function APC10/Doc1 mutants have rudimentary imaginal discs and arrest their development as prepupae. Larval neuroblasts from these mutants show gross mitotic defects including high mitotic index, chromosome overcondensation, metaphase-like arrest and frequent aneuploid and polyploid cells. Mitotically arrested cells accumulate one of the main substrates of APC/C, cyclin B, most likely due to disabled ubiquitination activity. Our results suggest that the Apc10/Doc1 subunit has an essential role in establishing E3 ubiquitin ligase activity of APC/C in Drosophila.


Assuntos
Proteínas de Drosophila/química , Fatores de Transcrição/química , Complexos Ubiquitina-Proteína Ligase/química , Alelos , Ciclossomo-Complexo Promotor de Anáfase , Animais , Sequência de Bases , Ciclina B/metabolismo , Primers do DNA , Proteínas de Drosophila/genética , Drosophila melanogaster , Genes Letais , Mutação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/genética , Complexos Ubiquitina-Proteína Ligase/genética
4.
Pathol Oncol Res ; 23(2): 253-264, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27411922

RESUMO

DNA damage response failure may influence the efficacy of DNA-damaging treatments. We determined the expression of 16 genes involved in distinct DNA damage response pathways, in association with the response to standard therapy. Twenty patients with locoregionally advanced, squamous cell head and neck carcinoma were enrolled. The treatment included induction chemotherapy (iChT) with docetaxel, cisplatin and 5-fluorouracil followed by concomitant chemoradiotherapy (ChRT) or radiotherapy (RT) alone. The volumetric metabolic therapeutic response was determined by [18F]FDG-PET/CT. In the tumor and matched normal tissues collected before treatment, the gene expressions were examined via the quantitative real-time polymerase chain reaction (qRT-PCR). The down-regulation of TP53 was apparently associated with a poor response to iChT, its up-regulation with complete regression in 2 cases. 7 cases with down-regulated REV1 expression showed complete regression after ChRT/RT, while 1 case with REV1 overexpression was resistant to RT. The overexpression of WRN was an independent predictor of tumor relapse. Our results suggest that an altered expression of REV1 predicts sensitivity to RT, while WRN overexpression is an unfavorable prognostic factor.


Assuntos
Reparo do DNA/genética , Neoplasias de Cabeça e Pescoço/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/radioterapia , Quimiorradioterapia/métodos , Cisplatino/administração & dosagem , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/genética , Reparo do DNA/efeitos dos fármacos , Docetaxel , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Feminino , Fluordesoxiglucose F18/administração & dosagem , Fluoruracila/administração & dosagem , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Masculino , Dosagem Radioterapêutica , Carcinoma de Células Escamosas de Cabeça e Pescoço , Taxoides/administração & dosagem , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
5.
Fly (Austin) ; 9(3): 138-44, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26818699

RESUMO

Sample homogenization is an essential step for genomic DNA extraction, with multiple downstream applications in Molecular Biology. Genotyping hundreds or thousands of samples requires an automation of this homogenization step, and high throughput homogenizer equipment currently costs 7000 euros or more. We present an apparatus for homogenization of individual Drosophila adult flies in 96-well micro-titer dishes, which was built from a small portable paint-shaker (F5 portable paint-shaker, Ushake). Single flies are disrupted in each well that contains extraction buffer and a 4-mm metal ball. Our apparatus can hold up to five 96-well micro-titer plates. Construction of the homogenizer apparatus takes about 3-4 days, and all equipment can be obtained from a home improvement store. The total material cost is approximately 700 euros including the paint-shaker. We tested the performance of our apparatus using the ZR-96 Quick-gDNA™ kit (Zymo Research) homogenization buffer and achieved nearly complete tissue homogenization after 15 minutes of shaking. PCR tests did not detect any cross contamination between samples of neighboring wells. We obtained on average 138 ng of genomic DNA per fly, and DNA quality was adequate for standard PCR applications. In principle, our tissue homogenizer can be used for isolation of DNA suitable for library production and high throughput genotyping by Multiplexed Shotgun Genotyping (MSG), as well as RNA isolation from single flies. The sample adapter can also hold and shake other items, such as centrifuge tubes (15-50 mL) or small bottles.


Assuntos
DNA/isolamento & purificação , Drosophila/genética , Técnicas Genéticas/instrumentação , Animais , Técnicas de Genotipagem
6.
PLoS One ; 10(3): e0120875, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25806519

RESUMO

Protein ubiquitylation is a dynamic process that affects the function and stability of proteins and controls essential cellular processes ranging from cell proliferation to cell death. This process is regulated through the balanced action of E3 ubiquitin ligases and deubiquitylating enzymes (DUB) which conjugate ubiquitins to, and remove them from target proteins, respectively. Our genetic analysis has revealed that the deubiquitylating enzyme DmUsp5 is required for maintenance of the ubiquitin equilibrium, cell survival and normal development in Drosophila. Loss of the DmUsp5 function leads to late larval lethality accompanied by the induction of apoptosis. Detailed analyses at a cellular level demonstrated that DmUsp5 mutants carry multiple abnormalities, including a drop in the free monoubiquitin level, the excessive accumulation of free polyubiquitins, polyubiquitylated proteins and subunits of the 26S proteasome. A shortage in free ubiquitins results in the induction of a ubiquitin stress response previously described only in the unicellular budding yeast. It is characterized by the induction of the proteasome-associated deubiquitylase DmUsp14 and sensitivity to cycloheximide. Removal of DmUsp5 also activates the pro-apoptotic machinery thereby resulting in widespread apoptosis, indicative of an anti-apoptotic role of DmUsp5. Collectively, the pleiotropic effects of a loss of DmUsp5 function can be explained in terms of the existence of a limited pool of free monoubiquitins which makes the ubiquitin-dependent processes mutually interdependent.


Assuntos
Apoptose/fisiologia , Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiologia , Proteases Específicas de Ubiquitina/metabolismo , Ubiquitina/metabolismo , Animais , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/fisiologia
7.
Cell Div ; 7(1): 9, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-22417125

RESUMO

BACKGROUND: Ubiquitin-dependent protein degradation is a critical step in key cell cycle events, such as metaphase-anaphase transition and mitotic exit. The anaphase promoting complex/cyclosome (APC/C) plays a pivotal role in these transitions by recognizing and marking regulatory proteins for proteasomal degradation. Its overall structure and function has been elucidated mostly in yeasts and mammalian cell lines. The APC/C is, however, a multisubunit assembly with at least 13 subunits and their function and interaction within the complex is still relatively uncharacterized, particularly in metazoan systems. Here, lemming (lmg) mutants were used to study the APC/C subunit, Apc11, and its interaction partners in Drosophila melanogaster. RESULTS: The lmg gene was initially identified through a pharate adult lethal P element insertion mutation expressing developmental abnormalities and widespread apoptosis in larval imaginal discs and pupal abdominal histoblasts. Larval neuroblasts were observed to arrest mitosis in a metaphase-like state with highly condensed, scattered chromosomes and frequent polyploidy. These neuroblasts contain high levels of both cyclin A and cyclin B. The lmg gene was cloned by virtue of the lmg03424 P element insertion which is located in the 5' untranslated region. The lemming locus is transcribed to give a 2.0 kb mRNA that contains two ORFs, lmgA and lmgB. The lmgA ORF codes for a putative protein with more than 80% sequence homology to the APC11 subunit of the human APC/C. The 85 amino acid protein also contains a RING-finger motif characteristic of known APC11 subunits. The lmgA ORF alone was sufficient to rescue the lethal and mitotic phenotypes of the lmg138 null allele and to complement the temperature sensitive lethal phenotype of the APC11-myc9 budding yeast mutant. The LmgA protein interacts with Mr/Apc2, and they together form a binding site for Vihar, the E2-C type ubiquitin conjugating enzyme. Despite being conserved among Drosophila species, the LmgB protein is not required for viability or fertility. CONCLUSIONS: Our work provides insight into the subunit structure of the Drosophila APC/C with implications for its function. Based on the presented data, we suggest that the Lmg/Apc11 subunit recruits the E2-C type ubiquitin conjugating enzyme, Vihar, to the APC/C together with Mr/Apc2 by forming a ternary complex.

8.
FEBS J ; 278(24): 4833-44, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21973017

RESUMO

Polyubiquitin receptors execute the targeting of polyubiquitylated proteins to the 26S proteasome. In vitro studies indicate that disturbance of the physiological balance among different receptor proteins impairs the proteasomal degradation of polyubiquitylated proteins. To study the physiological consequences of shifting the in vivo equilibrium between the p54/Rpn10 proteasomal and the Dsk2/dUbqln extraproteasomal polyubiquitin receptors, transgenic Drosophila lines were constructed in which the overexpression or RNA interference-mediated silencing of these receptors can be induced. Flies overexpressing Flag-p54 were viable and fertile, without any detectable morphological abnormalities, although detectable accumulation of polyubiquitylated proteins demonstrated a certain level of proteolytic disturbance. Flag-p54 was assembled into the 26S proteasome and could fully complement the lethal phenotype of a p54 null mutant Drosophila line. The overexpression of Dsk2 caused severe morphological abnormalities in the late pupal stages, leading to pharate adult lethality, accompanied by a huge accumulation of highly polyubiquitylated proteins. The lethal phenotype of Dsk2 overexpression could be rescued in a double transgenic line coexpressing Flag-Dsk2 and Flag-p54. Although the double transgenic line was viable and fertile, it did not restore the proteolytic defects; the accumulation of the highly polyubiquitylated proteins was even more severe in the double transgenic line. Significant differences were found in the Dsk2-26S proteasome interaction in Drosophila melanogaster as compared with Saccharomyces cerevisiae. In yeast, Dsk2 can interact only with ΔRpn10 proteasomes and not with the wild-type one. In Drosophila, Dsk2 does not interact with Δp54 proteasomes, but the interaction can be fully restored by complementing the Δp54 deletion with Flag-p54.


Assuntos
Proteínas de Transporte/biossíntese , Proteínas de Ciclo Celular/biossíntese , Proteínas de Drosophila/biossíntese , Complexo de Endopeptidases do Proteassoma/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas de Transporte/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Poliubiquitina/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Pupa/metabolismo
9.
J Cell Sci ; 120(Pt 18): 3238-48, 2007 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-17878237

RESUMO

The anaphase-promoting complex/cyclosome or APC/C is a key regulator of chromosome segregation and mitotic exit in eukaryotes. It contains at least 11 subunits, most of which are evolutionarily conserved. The most abundant constituents of the vertebrate APC/C are the four structurally related tetratrico-peptide repeat (TPR) subunits, the functions of which are not yet precisely understood. Orthologues of three of the TPR subunits have been identified in Drosophila. We have shown previously that one of the TPR subunits of the Drosophila APC/C, Apc3 (also known as Cdc27 or Mákos), is essential for development, and perturbation of its function results in mitotic cyclin accumulation and metaphase-like arrest. In this study we demonstrate that the Drosophila APC/C associates with a new TPR protein, a genuine orthologue of the vertebrate Apc7 subunit that is not found in yeasts. In addition to this, transgenic flies knocked down for three of the TPR genes Apc6 (Cdc16), Apc7 and Apc8 (Cdc23), by RNA interference were established to investigate their function. Whole-body expression of subunit-specific dsRNA efficiently silences these genes resulting in only residual mRNA concentrations. Apc6/Cdc16 and Apc8/Cdc23 silencing induces developmental delay and causes different pupal lethality. Cytological examination showed that these animals had an elevated level of apoptosis, high mitotic index and delayed or blocked mitosis in a prometaphase-metaphase-like state with overcondensed chromosomes. The arrested neuroblasts contained elevated levels of cyclin B but, surprisingly, cyclin A appeared to be degraded normally. Contrary to the situation for the Apc6/Cdc16 and Apc8/Cdc23 genes, the apparent loss of Apc7 function does not lead to the above abnormalities. Instead, the Apc7 knocked down animals and null mutants are viable and fertile, although they display mild chromosome segregation defects and anaphase delay. Nevertheless, the Apc7 subunit shows synergistic genetic interaction with Apc8/Cdc23 that, together with the phenotypic data, assumes a limited functional role for Apc7. Taken together, these data suggest that the structurally related TPR subunits contribute differently to the function of the anaphase-promoting complex.


Assuntos
Apoptose/fisiologia , Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Metáfase/fisiologia , Prometáfase/fisiologia , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ciclossomo-Complexo Promotor de Anáfase , Animais , Animais Geneticamente Modificados , Proteínas de Ciclo Celular/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Inativação Gênica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Pupa/genética , Pupa/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Complexos Ubiquitina-Proteína Ligase/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa