Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Int J Mol Sci ; 24(24)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38139260

RESUMO

Endometrial cancer (ECa) is the most common female gynecologic cancer. When comparing the two histological subtypes of endometrial cancer, Type II tumors are biologically more aggressive and have a worse prognosis than Type I tumors. Current treatments for Type II tumors are ineffective, and new targeted therapies are urgently needed. LIFR and its ligand, LIF, have been shown to play a critical role in the progression of multiple solid cancers and therapy resistance. The role of LIF/LIFR in the progression of Type II ECa, on the other hand, is unknown. We investigated the role of LIF/LIFR signaling in Type II ECa and tested the efficacy of EC359, a novel small-molecule LIFR inhibitor, against Type II ECa. The analysis of tumor databases has uncovered a correlation between diminished survival rates and increased expression of leukemia inhibitory factor (LIF), suggesting a potential connection between altered LIF expression and unfavorable overall survival in Type II ECa. The results obtained from cell viability and colony formation assays demonstrated a significant decrease in the growth of Type II ECa LIFR knockdown cells in comparison to vector control cells. Furthermore, in both primary and established Type II ECa cells, pharmacological inhibition of the LIF/LIFR axis with EC359 markedly decreased cell viability, long-term cell survival, and invasion, and promoted apoptosis. Additionally, EC359 treatment reduced the activation of pathways driven by LIF/LIFR, such as AKT, mTOR, and STAT3. Tumor progression was markedly inhibited by EC359 treatment in two different patient-derived xenograft models in vivo and patient-derived organoids ex vivo. Collectively, these results suggest LIFR inhibitor EC359 as a possible new small-molecule therapeutics for the management of Type II ECa.


Assuntos
Neoplasias do Endométrio , Transdução de Sinais , Humanos , Feminino , Receptores de OSM-LIF/metabolismo , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/genética , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/metabolismo , Neoplasias do Endométrio/tratamento farmacológico
2.
Bioorg Med Chem ; 25(20): 5569-5575, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28886996

RESUMO

A series of estradiol-17-ß esters of N-(p-sulfomylbenzamide)-amino acids were prepared and evaluated for systemic and hepatic estrogenic activity after oral administration in ovariectomized rats. The alkyl substitution at nitrogen of amino acids such as proline or N-methyl-alanine produced compounds that exhibit potent oral activity. The proline analog (EC508) was further evaluated along with 17ß-estradiol (E2) and ethinyl-estradiol (EE) and compared their effects on the uterus, angiotensin and HDL-cholesterol after oral administration to ovariectomized female rats. Orally administered EC508 produced systemic estrogenic activity 10 times greater than EE and a 100 times higher activity than E2 with no influence on levels of angiotensin and HDL-cholesterol, whereas EE and E2 reduced the HDL-cholesterol and increased the angiotensine plasma levels. EC508 might offer significant advantages in indications like fertility control and HRT based on its high oral bioavailability and lack of hepatic estrogenicity.


Assuntos
Estradiol/metabolismo , Fígado/metabolismo , Pró-Fármacos/metabolismo , Absorção Fisiológica , Administração Oral , Animais , Estradiol/administração & dosagem , Estradiol/química , Feminino , Ovariectomia , Pró-Fármacos/administração & dosagem , Pró-Fármacos/química , Ratos , Ratos Wistar
3.
NPJ Precis Oncol ; 8(1): 118, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789520

RESUMO

Of all gynecologic cancers, epithelial-ovarian cancer (OCa) stands out with the highest mortality rates. Despite all efforts, 90% of individuals who receive standard surgical and cytotoxic therapy experience disease recurrence. The precise mechanism by which leukemia inhibitory factor (LIF) and its receptor (LIFR) contribute to the progression of OCa remains unknown. Analysis of cancer databases revealed that elevated expression of LIF or LIFR was associated with poor progression-free survival of OCa patients and a predictor of poor response to chemotherapy. Using multiple primary and established OCa cell lines or tissues that represent five subtypes of epithelial-OCa, we demonstrated that LIF/LIFR autocrine signaling is active in OCa. Moreover, treatment with LIFR inhibitor, EC359 significantly reduced OCa cell viability and cell survival with an IC50 ranging from 5-50 nM. Furthermore, EC359 diminished the stemness of OCa cells. Mechanistic studies using RNA-seq and rescue experiments unveiled that EC359 primarily induced ferroptosis by suppressing the glutathione antioxidant defense system. Using multiple in vitro, ex vivo and in vivo models including cell-based xenografts, patient-derived explants, organoids, and xenograft tumors, we demonstrated that EC359 dramatically reduced the growth and progression of OCa. Additionally, EC359 therapy considerably improved tumor immunogenicity by robust CD45+ leukocyte tumor infiltration and polarizing tumor-associated macrophages (TAMs) toward M1 phenotype while showing no impact on normal T-, B-, and other immune cells. Collectively, our findings indicate that the LIF/LIFR autocrine loop plays an essential role in OCa progression and that EC359 could be a promising therapeutic agent for OCa.

4.
Biochim Biophys Acta Rev Cancer ; 1877(4): 188737, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35680099

RESUMO

The dysregulation of leukemia inhibitory factor (LIF) and its cognate receptor (LIFR) has been associated with multiple cancer initiation, progression, and metastasis. LIF plays a significant tumor-promoting role in cancer, while LIFR functions as a tumor promoter and suppressor. Epithelial and stromal cells secrete LIF via autocrine and paracrine signaling mechanism(s) that bind with LIFR and subsequently with co-receptor glycoprotein 130 (gp130) to activate JAK/STAT1/3, PI3K/AKT, mTORC1/p70s6K, Hippo/YAP, and MAPK signaling pathways. Clinically, activating the LIF/LIFR axis is associated with poor survival and anti-cancer therapy resistance. This review article provides an overview of the structure and ligands of LIFR, LIF/LIFR signaling in developmental biology, stem cells, cancer stem cells, genetics and epigenetics of LIFR, LIFR regulation by long non-coding RNAs and miRNAs, and LIF/LIFR signaling in cancers. Finally, neutralizing antibodies and small molecule inhibitors preferentially blocking LIF interaction with LIFR and antagonists against LIFR under pre-clinical and early-phase pre-clinical trials were discussed.


Assuntos
Subunidade alfa de Receptor de Fator Inibidor de Leucemia , Fator Inibidor de Leucemia , Neoplasias , Fosfatidilinositol 3-Quinases , Humanos , Interleucina-6/metabolismo , Fator Inibidor de Leucemia/genética , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética
5.
Genes Dis ; 9(4): 973-980, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35685476

RESUMO

Leukemia inhibitory factor (LIF), and its receptor (LIFR), are commonly over-expressed in many solid cancers and recent studies have implicated LIF/LIFR axis as a promising clinical target for cancer therapy. LIF/LIFR activate oncogenic signaling pathways including JAK/STAT3 as immediate effectors and MAPK, AKT, mTOR further downstream. LIF/LIFR signaling plays a key role in tumor growth, progression, metastasis, stemness and therapy resistance. Many solid cancers show overexpression of LIF and autocrine stimulation of the LIF/LIFR axis; these are associated with a poorer relapse-free survival. LIF/LIFR signaling also plays a role in modulating multiple immune cell types present in tumor micro environment (TME). Recently, two targeted agents that target LIF (humanized anti-LIF antibody, MSC-1) and LIFR inhibitor (EC359) were under development. Both agents showed effectivity in preclinical models and clinical trials using MSC-1 antibody are in progress. This article reviews the significance of LIF/LIFR pathways and inhibitors that disrupt this process for the treatment of cancer.

6.
Cancers (Basel) ; 14(21)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36358818

RESUMO

Endometrial cancer (EC) is the fourth most common cancer in women, and half of the endometrioid EC (EEC) cases are attributable to obesity. However, the underlying mechanism(s) of obesity-driven EEC remain(s) unclear. In this study, we examined whether LIF signaling plays a role in the obesity-driven progression of EEC. RNA-seq analysis of EEC cells stimulated by adipose conditioned medium (ADP-CM) showed upregulation of LIF/LIFR-mediated signaling pathways including JAK/STAT and interleukin pathways. Immunohistochemistry analysis of normal and EEC tissues collected from obese patients revealed that LIF expression is upregulated in EEC tissues compared to the normal endometrium. Treatment of both primary and established EEC cells with ADP-CM increased the expression of LIF and its receptor LIFR and enhanced proliferation of EEC cells. Treatment of EEC cells with the LIFR inhibitor EC359 abolished ADP-CM induced colony formation andcell viability and decreased growth of EEC organoids. Mechanistic studies using Western blotting, RT-qPCR and reporter assays confirmed that ADP-CM activated LIF/LIFR downstream signaling, which can be effectively attenuated by the addition of EC359. In xenograft assays, co-implantation of adipocytes significantly enhanced EEC xenograft tumor growth. Further, treatment with EC359 significantly attenuated adipocyte-induced EEC progression in vivo. Collectively, our data support the premise that LIF/LIFR signaling plays an important role in obesity-driven EEC progression and the LIFR inhibitor EC359 has the potential to suppress adipocyte-driven tumor progression.

7.
J Nanosci Nanotechnol ; 11(5): 3789-99, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21780370

RESUMO

Letrozole is a potent aromatase inhibitor and superior to other defined selective estrogen receptor modulators such as tamoxifen in treating hormone-responsive postmenopausal breast cancer patients. Patients who receive this drug may become insensitive to the effects of estrogen deprivation induced by letrozole. Letrozole has known side effects on bone metabolism due to systemic ablation of estrogen production. The purpose of this study was to examine the therapeutic efficacy of hyaluronic acid-bound letrozole nanoparticles (HA-Letr-NPs) in restoring sensitivity to letrozole-resistant (LTLT-Ca) cells. To target letrozole to LTLT-Ca cells, hyaluronic acid-bound letrozole nanoparticles were prepared by nanoprecipitation using biodegradable PLGA-PEG co-polymer. Binding specificity of HA to CD44 on the cell surface was analyzed in vitro using FITC-CD44 Ab and CD44 siRNA by flow cytometry. Effects on in vitro cytotoxicity and aromatase enzymatic activity of HA-Letr-NPs were performed in MCF-7 breast cancer cells, MCF-7 cells over-expressing aromatase (MCF-7/Aro), and LTLT-Ca cells resistant to letrozole. Preclinical efficacy of HA-Letr-NPs was examined in mice using LTLT-Ca xenograft tumors. HA-Letr-NPs were restricted to a maximum size of 100 nm. The in vitro drug release assay showed that the highest released concentration of letrozole occurred after 23 hours at 37 degrees C in phosphate-buffered saline. HA-Letr-NPs on MCF-7/Aro and LTLT-Ca cells showed an IC50 of 2 microM and 5 microM, respectively. HA-Letr-NPs were more efficacious in inhibiting tumor growth, reducing in vitro cellular and in vivo tumor aromatase enzyme activity more than the corresponding Letr-NPs or letrozole. HA-Letr-NPs restored and maintained a prolonged sensitivity and targeted delivery of letrozole in letrozole-resistant tumors in vivo.


Assuntos
Antineoplásicos/farmacologia , Ácido Hialurônico/química , Nanopartículas , Nitrilas/farmacologia , Triazóis/farmacologia , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Western Blotting , Resistencia a Medicamentos Antineoplásicos , Citometria de Fluxo , Letrozol , Camundongos , Microscopia Eletrônica de Varredura , Nitrilas/química , Interferência de RNA , Triazóis/química , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Pharmaceuticals (Basel) ; 14(12)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34959717

RESUMO

Triple-negative breast cancer (TNBC) is characterized by the absence of estrogen receptor-α progesterone receptor and human epidermal growth factor receptor-2. Treatment for this breast cancer subtype is restricted to multidrug chemotherapy and survival pathway-based molecularly targeted therapy. The long-term treatment options are associated with systemic toxicity, spontaneous and/or acquired tumor resistance and the emergence a of drug-resistant stem cell population. These limitations lead to advanced stage metastatic cancer. Current emphasis is on research directions that identify efficacious, naturally occurring agents representing an unmet need for testable therapeutic alternatives for therapy resistant breast cancer. Chinese herbs are widely used in traditional Chinese medicine in women for estrogen related health issues and also for integrative support for cancer treatment. This review discusses published evidence on a TNBC model for growth inhibitory effects of several mechanistically distinct nontoxic Chinese herbs, most of them nutritional in nature, and identifies susceptible pathways and potential molecular targets for their efficacy. Documented anti-proliferative and pro-apoptotic effects of these herbs are associated with downregulation of RB, RAS, PI3K, and AKT signaling, modulation of Bcl-2/BAX protein expressions and increased caspase activity. This review provides a proof of concept for Chinese herbs as testable alternatives for prevention/therapy of TNBC.

9.
Cell Death Discov ; 7(1): 216, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34400617

RESUMO

Endometrial cancer (EC) is the fourth most common cancer in women. Advanced-stage EC has limited treatment options with a poor prognosis. There is an unmet need for the identification of actionable drivers for the development of targeted therapies in EC. Leukemia inhibitory factor receptor (LIFR) and its ligand LIF play a major role in cancer progression, metastasis, stemness, and therapy resistance. However, little is known about the functional significance of the LIF/LIFR axis in EC progression. In this study using endometrial tumor tissue arrays, we identified that expression of LIF, LIFR is upregulated in EC. Knockout of LIFR using CRISPR/Cas9 in two different EC cells resulted in a significant reduction of their cell viability and cell survival. In vivo studies demonstrated that LIFR-KO significantly reduced EC xenograft tumor growth. Treatment of established and primary patient-derived EC cells with a novel LIFR inhibitor, EC359 resulted in the reduction of cell viability with an IC50 in the range of 20-100 nM and induction of apoptosis. Further, treatment with EC359 reduced the spheroid formation of EC cancer stem cells and reduced the levels of cancer stem cell markers SOX2, OCT4, NANOG, and Axin2. Mechanistic studies demonstrated that EC359 treatment attenuated the activation of LIF-LIFR driven pathways, including STAT3 and AKT/mTOR signaling in EC cells. Importantly, EC359 treatment resulted in a significant reduction of the growth of EC patient-derived explants ex vivo, EC cell line-derived xenografts, and patient-derived xenografts in vivo. Collectively, our work revealed the oncogenic potential of the LIF/LIFR axis in EC and support the utility of LIFR inhibitor, EC359, as a novel targeted therapy for EC via the inhibition of LIF/LIFR oncogenic signaling.

10.
Commun Biol ; 4(1): 1235, 2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34716410

RESUMO

Histone deacetylase inhibitors (HDACi) are identified as novel therapeutic agents, however, recent clinical studies suggested that they are marginally effective in treating triple negative breast cancer (TNBC). Here, we show that first-in-class Leukemia Inhibitory Factor Receptor (LIFRα) inhibitor EC359 could enhance the therapeutic efficacy of HDACi against TNBC. We observed that both targeted knockdown of LIFR with CRISPR or treatment with EC359 enhanced the potency of four different HDACi in reducing cell viability, cell survival, and enhanced apoptosis compared to monotherapy in TNBC cells. RNA-seq studies demonstrated oncogenic/survival signaling pathways activated by HDACi were attenuated by the EC359 + HDACi therapy. Importantly, combination therapy potently inhibited the growth of TNBC patient derived explants, cell derived xenografts and patient-derived xenografts in vivo. Collectively, our results suggest that targeted inhibition of LIFR can enhance the therapeutic efficacy of HDACi in TNBC.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Inibidores de Histona Desacetilases/administração & dosagem , Camundongos , Camundongos SCID
11.
Breast Cancer Res ; 11(5): R74, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19821999

RESUMO

INTRODUCTION: Proteasome inhibition provides an attractive approach to cancer therapy and may have application in the treatment of breast cancer. However, results of recent clinical trials to evaluate the effect of the proteasome inhibitor Bortezomib (Velcade, also called PS-341) in metastatic breast cancer patients have shown limited activity when used as a single agent. This underscores the need to find new and more efficacious proteasome inhibitors. In this study, we evaluate the efficacy of the novel proteasome inhibitor BU-32 (NSC D750499-S) using in vitro and in vivo breast cancer models. METHODS: We have recently synthesized a novel proteasome inhibitor (BU-32) and tested its growth inhibitory effects in different breast cancer cells including MCF-7, MDA-MB-231, and SKBR3 by in vitro cytotoxicity and proteasomal inhibition assays. The apoptotic potential of BU32 was tested using flow cytometry and analyzing cell cycle regulatory proteins. In vivo tumor xenograft studies for solid tumor as well as tumor metastasis were conducted using MDA-MB-231-GFP cells. RESULTS: We report for the first time that BU-32 exhibits strong cytotoxicity in a panel of cell lines: MDA-MB-231 (IC50 = 5.8 nM), SKBR3 (IC50 = 5.7 nM) and MCF-7 cells (IC50 = 5.8 nM). It downregulates a wide array of angiogenic marker genes and upregulates apoptotic markers, including Bid and Bax. Incubation of MDA-MB-231 cells with BU-32 results in the accumulation of cell cycle inhibitor proteins p21 and p27 and stabilization of the tumor suppressor protein p53. Studies in in vivo solid tumor and metastasis models show significant effect with a 0.06 mg/kg dose of BU-32 and marked reduction in tumor burden in the skeleton. CONCLUSIONS: We have shown that BU-32 is effective in cultured breast cancer cells and in breast cancer xenografts. The results suggest its potential benefit in breast cancer treatment.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Inibidores de Proteases/farmacologia , Inibidores de Proteassoma , Pirazóis/farmacologia , Animais , Apoptose/efeitos dos fármacos , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/enzimologia , Neoplasias Ósseas/genética , Neoplasias Ósseas/secundário , Ácidos Borônicos/farmacologia , Bortezomib , Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Quimotripsina/antagonistas & inibidores , Quimotripsina/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , NF-kappa B/biossíntese , NF-kappa B/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Pirazinas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Mol Hum Reprod ; 15(10): 665-73, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19505996

RESUMO

Transforming growth factor beta 1 (TGF-beta1) levels are increased in the peritoneal fluid of endometriosis patients, and endometrial cells express TGF-beta signaling components; however, little is known regarding the role of TGF-beta in endometriosis. Our objective was to examine the effects of TGF-beta1 on (i) the expression of macrophage colony-stimulating factor receptor encoded by the c-fms gene, (ii) transmesothelial invasiveness of endometrial cells, (iii) cellular proliferation and (iv) attachment to peritoneal mesothelial cells (PMCs). Effects of TGF-beta1 on c-fms mRNA expression were determined by real-time RT-PCR and c-fms cell-surface expression by flow cytometry. Effects of TGF-beta1 on the invasiveness of the immortalized endometrial epithelial cell (EEC) line EM42 and primary EECs were examined using a three-dimensional in vitro system modeling the peritoneum. Cellular proliferation and attachment to PMCs were also examined using established techniques. TGF-beta1 had little or no effect on cellular proliferation and endometrial cell attachment to PMCs. TGF-beta1 significantly induced the expression of c-fms mRNA and c-fms cell-surface expression. TGF-beta1 enhanced transmesothelial invasion by EM42 cells and EECs. Antagonists of TGF-beta1 signaling significantly inhibited both the induction of c-fms expression and cellular invasiveness, suggesting that additional studies are warranted to assess the therapeutic potential of TGF-beta antagonists in endometriosis.


Assuntos
Endométrio/citologia , Células Epiteliais/citologia , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Células Cultivadas , Imunoprecipitação da Cromatina , Inibidores Enzimáticos/farmacologia , Células Epiteliais/efeitos dos fármacos , Feminino , Citometria de Fluxo , Expressão Gênica/efeitos dos fármacos , Humanos , Imidazóis/farmacologia , Regiões Promotoras Genéticas/genética , Piridinas/farmacologia , Receptor de Fator Estimulador de Colônias de Macrófagos/genética , Fator de Crescimento Transformador beta/antagonistas & inibidores , Fator de Crescimento Transformador beta/fisiologia
13.
Gynecol Oncol ; 114(3): 496-500, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19555998

RESUMO

OBJECTIVES: We have previously demonstrated that aromatase mRNA is induced in cervical carcinomas compared to normal tissue, suggesting that in situ aromatase expression leading to elevated local estrogen production may contribute to cervical carcinogensis. Our objectives are to examine 1) whether aromatase protein and activity are induced in cervical carcinomas, 2) aromatase expression correlates with disease stage, and 3) inflammatory cytokines (e.g., IL-6 and TNFalpha) may correlate with aromatase expression. METHODS: RNA and protein were isolated from human cervical carcinomas and normal cervical biopsies to examine aromatase expression, using real-time RT-PCR, Western blot analysis, and immunohistochemistry. Aromatase activity in tissue was measured using the tritiated water release method. IL-6 and TNFalpha expression was also examined. RESULTS: Aromatase protein and activity levels were increased in cervical carcinomas compared to normal tissue. RNA levels correlated significantly with disease progression, with highest aromatase expression detected in stage IV tumors (p<0.001, R(2)=0.77). Aromatase promoters 1.3 and 1.4 were elevated in cervical carcinomas and in cervical cancer cells. The expression of inflammatory cytokines IL-6 and TNFalpha, known to induce aromatase, significantly correlated with aromatase expression (R(2)>0.9). TNFalpha treatment induced aromatase expression in cervical cancer cells. CONCLUSION: Increased aromatase protein and activity in cervical carcinomas and the correlation of its expression with disease stage implicates it in cervical carcinogenesis. The correlation of IL-6 and TNFalpha expression with aromatase suggests that these inflammatory cytokines may induce aromatase expression, which is confirmed by induction of aromatase expression due to TNFalpha treatment of cervical cancer cells.


Assuntos
Aromatase/biossíntese , Neoplasias do Colo do Útero/enzimologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Aromatase/genética , Progressão da Doença , Feminino , Células HeLa , Humanos , Imuno-Histoquímica , Interleucina-6/biossíntese , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Regiões Promotoras Genéticas , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Necrose Tumoral alfa/biossíntese , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/imunologia , Neoplasias do Colo do Útero/patologia
14.
Mol Endocrinol ; 22(3): 649-64, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18079323

RESUMO

In situ estrogen synthesis is implicated in tumor cell proliferation through autocrine or paracrine mechanisms especially in postmenopausal women. Several recent studies demonstrated activity of aromatase, an enzyme that plays a critical role in estrogen synthesis in breast tumors. Proline-, glutamic acid-, and leucine-rich protein-1 (PELP1/MNAR) is an estrogen receptor (ER) coregulator, and its expression is deregulated in breast tumors. In this study, we examined whether PELP1 promotes tumor growth by promoting local estrogen synthesis using breast cancer cells (MCF7) that stably overexpress PELP1. Immunohistochemistry revealed increased aromatase expression in MCF7-PELP1-induced xenograft tumors. Real-time PCR analysis showed enhanced activation of the aromatase promoter in MCF7-PELP1 clones compared with MCF7 cells. Using a tritiated-water release assay, we demonstrated that MCF7-PELP1 clones exhibit increased aromatase activity compared with control MCF-7 cells. PELP1 deregulation uniquely up-regulated aromatase expression via activation of aromatase promoter I.3/II, and growth factor signaling enhanced PELP1 activation of aromatase. PELP1-mediated induction of aromatase requires functional Src and phosphatidylinositol-3-kinase pathways. Mechanistic studies revealed that PELP1 interactions with ER-related receptor-alpha and proline-rich nuclear receptor coregulatory protein 2 lead to activation of aromatase. Immunohistochemistry analysis of breast tumor array showed increased expression of aromatase in ductal carcinoma in situ and node-positive tumors compared with no or weak expression in normal breast tissue. Fifty-four percent (n = 79) of PELP1-overexpressing tumors also overexpressed aromatase compared with 36% (n = 47) in PELP1 low-expressing tumors. Our results suggest that PELP1 regulation of aromatase represents a novel mechanism for in situ estrogen synthesis leading to tumor proliferation by autocrine loop and open a new avenue for ablating local aromatase activity in breast tumors.


Assuntos
Neoplasias da Mama/metabolismo , Carcinoma Ductal de Mama/metabolismo , Estrogênios/biossíntese , Transativadores/metabolismo , Aromatase/biossíntese , Aromatase/genética , Aromatase/metabolismo , Comunicação Autócrina , Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Carcinoma Ductal de Mama/enzimologia , Carcinoma Ductal de Mama/genética , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Proteínas Correpressoras , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Pessoa de Meia-Idade , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptor ErbB-2/metabolismo , Receptores de Estrogênio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise Serial de Tecidos , Transativadores/biossíntese , Transativadores/genética , Fatores de Transcrição
15.
Cancer Res ; 67(5): 1918-26, 2007 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-17332318

RESUMO

Cervical cancer is the third most common gynecologic cancer in the United States. The presence and possible involvement of several cytokines have been studied in cervical cancer; however, very little data, if any, are available on whether cervical tumors are responsive to stimulation by the macrophage colony-stimulating factor-1 (CSF-1). Given the involvement of c-fms and its ligand CSF-1 in gynecologic cancers, such as that of the uterus and the ovaries, we have examined the expression of c-fms and CSF-1 in cervical tumor (n = 17) and normal cervix (n = 8) samples. The data show that c-fms and its ligand are significantly higher in cervical carcinomas compared with normal samples. Immunohistochemistry not only showed that tumor cells expressed significantly higher levels of c-fms but also c-fms levels were markedly higher in tumor cells than tumor-associated stromal cells. Blocking c-fms activity in cervical cancer cells, which express CSF-1 and c-fms, resulted in increased apoptosis and decreased motility compared with control, suggesting that CSF-1/c-fms signaling may be involved in enhanced survival and possibly invasion by cervical cancer cells via an autocrine mechanism. Combined, the data show for the first time the induction of CSF-1 and c-fms in cervical carcinomas and suggest that c-fms activation may play a role in cervical carcinogenesis. Additionally, our data suggest that transforming growth factor-beta1 may be a factor in inducing the expression of c-fms in cervical cancer cells. The data suggest that c-fms may be a valuable therapeutic target in cervical cancer.


Assuntos
Carcinoma/genética , Regulação Neoplásica da Expressão Gênica , Fator Estimulador de Colônias de Macrófagos/metabolismo , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Fator de Crescimento Transformador beta1/fisiologia , Neoplasias do Colo do Útero/genética , Apoptose/efeitos dos fármacos , Carcinoma/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Células HeLa , Humanos , Fator Estimulador de Colônias de Macrófagos/antagonistas & inibidores , Fator Estimulador de Colônias de Macrófagos/genética , Receptor de Fator Estimulador de Colônias de Macrófagos/genética , Fator de Crescimento Transformador beta1/metabolismo , Células Tumorais Cultivadas , Neoplasias do Colo do Útero/metabolismo
16.
Biomed Rep ; 11(5): 222-229, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31632670

RESUMO

Aromatase inhibitors (AIs) represent a treatment option for post-menopausal estrogen receptor-positive (ER+) breast cancer as monotherapy, or in combination with cyclin-dependent kinase 4/6 or mTOR inhibitors. Long-term treatment with these agents leads to dose-limiting toxicity and drug resistance. Natural substances provide testable alternatives to current therapy. Tabebuia avellanedae (TA) tree is indigenous to the Amazon rainforest. The inner bark of TA represents a medicinal dietary supplement known as Taheebo. Non-fractionated aqueous extract from TA is an effective growth inhibitor in the Luminal A and triple negative breast cancer models. The quinone derivative naphthofurandione (NFD) is a major bioactive agent in TA. The present study examined the efficacy of finely ground powder from the inner bark of TA, available under the name of Taheebo-NFD-Marugoto (TNM). The ER+ MCF-7 cells stably transfected with the aromatase gene MCF-7AROM represented a model for aromatase-expressing post-menopausal breast cancer. Anchorage-independent colony formation, cell cycle progression, pro-apoptotic caspase 3/7 activity, apoptosis-specific gene expression, aromatase activity and select estradiol (E2) target gene expression represented the mechanistic end points. Treatment of MCF-7AROM cells with TNM induced a dose-dependent reduction in E2-promoted anchorage-independent colony number. Mechanistic assays on TNM-treated MCF-7AROM cells demonstrated that TNM at a concentration of 10 µg (NFD content: 2 ng), induced S-phase arrest, increased pro-apoptotic caspase 3/7 activity, increased pro-apoptotic BAX and decreased anti-apoptotic BCL-2 gene expression, and inhibited aromatase activity. Additionally, TNM treatment downregulated ESR-1 (gene for ER-α), aromatase and progesterone gene expression and reduced mRNA levels of E2 target genes pS2, GRB2 and cyclin D1. Inhibition of aromatase activity, based on the NFD content of TNM was superior to the clinical AIs Letrozole and Exemestane. These data demonstrated the potential efficacy of TNM as a nutritional alternative for current therapy of aromatase positive, post-menopausal breast cancer.

17.
Oncol Lett ; 17(6): 5261-5266, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31186742

RESUMO

Triple-negative breast cancer (TNBC) lacks the expressions of estrogen receptor-α, progesterone receptor and human epidermal growth factor receptor-2. The treatment options for TNBC include anthracyclin/taxol based conventional chemotherapy and small molecular inhibitor based targeted therapy. However, the therapeutic efficacy is limited by systemic toxicity and acquired tumor resistance; identification of less toxic testable alternatives is urgently required. Non-toxic nutritional herbs are commonly used in traditional Chinese herbal medicine for general health management and may additionally represent a testable therapeutic alternative for TNBC. The present study examined the growth inhibitory efficacy of the nutritional herb Cornus officinalis (CO) in MDA-MB-231 cells, which represent a cell culture model for TNBC, and identified potential mechanistic leads. In MDA-MB-231 cells, CO induced dose-dependent cytostatic growth arrest [inhibitory concentration (IC)50, 0.1% and IC90, 0.5%], and inhibited anchorage independent colony formation. Mechanistically, CO inhibited G1 to S phase transition leading to G1 arrest and decreased the expression of cyclin D1 and phosphorylated-retinoblastoma proteins. CO additionally altered apoptosis specific BCL-2 associated X protein/B-cell lymphoma-2 expression and upregulated pro-apoptotic caspase-3/7 activity. Collectively, these data provided mechanistic evidence for the efficacy of CO, and validated a mechanism-based approach to prioritize efficacious nutritional herbs as testable alternatives for secondary prevention/treatment of TNBC.

18.
Sci Rep ; 9(1): 17279, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31754172

RESUMO

Uterine fibroids (UFs) are associated with irregular or excessive uterine bleeding, pelvic pain or pressure, or infertility. Ovarian steroid hormones support the growth and maintenance of UFs. Ulipristal acetate (UPA) a selective progesterone receptor (PR) modulator (SPRM) reduce the size of UFs, inhibit ovulation and lead to amenorrhea. Recent liver toxicity concerns with UPA, diminished enthusiasm for its use and reinstate the critical need for a safe, efficacious SPRM to treat UFs. In the current study, we evaluated the efficacy of new SPRM, EC313, for the treatment for UFs using a NOD-SCID mouse model. EC313 treatment resulted in a dose-dependent reduction in the fibroid xenograft weight (p < 0.01). Estradiol (E2) induced proliferation was blocked significantly in EC313-treated xenograft fibroids (p < 0.0001). Uterine weight was reduced by EC313 treatment compared to UPA treatment. ER and PR were reduced in EC313-treated groups compared to controls (p < 0.001) and UPA treatments (p < 0.01). UF specific desmin and collagen were markedly reduced with EC313 treatment. The partial PR agonism and no signs of unopposed estrogenicity makes EC313 a candidate for the long-term treatment for UFs. Docking studies have provided a structure based explanation for the SPRM activity of EC313.


Assuntos
Proliferação de Células/efeitos dos fármacos , Anticoncepcionais Femininos/administração & dosagem , Leiomioma/tratamento farmacológico , Congêneres da Progesterona/administração & dosagem , Receptores de Progesterona/agonistas , Neoplasias Uterinas/tratamento farmacológico , Animais , Anticoncepcionais Femininos/efeitos adversos , Anticoncepcionais Femininos/química , Estrenos/administração & dosagem , Estrenos/efeitos adversos , Feminino , Humanos , Leiomioma/patologia , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Norpregnadienos/administração & dosagem , Norpregnadienos/efeitos adversos , Oximas/administração & dosagem , Oximas/efeitos adversos , Congêneres da Progesterona/efeitos adversos , Congêneres da Progesterona/química , Receptores de Progesterona/química , Receptores de Progesterona/metabolismo , Relação Estrutura-Atividade , Neoplasias Uterinas/patologia , Útero/efeitos dos fármacos , Útero/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Genes Cancer ; 10(1-2): 1-10, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30899415

RESUMO

Survival of pancreatic cancer (PC) patient is poor due to lack of effective treatment modalities, which is partly due to the presence of dense desmoplasia that impedes the delivery of chemotherapeutics. Therefore, PC stroma-targeting therapies are expected to improve the efficacy of chemotherapeutics. However, in vitro evaluation of stromal-targeted therapies requires a culture system which includes components of both tumor stroma and parenchyma. We aim to generate a cell line-derived 3D organoids to test the efficacy of stromal-targeted, LIFR-inhibitor EC359. Murine PC (FC1245) and stellate (ImPaSC) cells were cultured to generate organoids that recapitulated the histological organization of PC with the formation of ducts by epithelial cells surrounded by activated fibroblasts, as indicated by CK19 and α-SMA staining, respectively. Analysis by qRT-PCR demonstrated a significant downregulation of markers of activated stroma, POSTN, FN1, MMP9, and SPARC (p<0.0001), when treated with gemcitabine in combination with EC359. Concurrently, collagen proteins including COL1A1, COL1A2, COL3A1, and COL5A1 were significantly downregulated (p <0.0001) after treatment with gemcitabine in combination with EC359. Overall, our study demonstrates the utility of cell lines-derived 3D organoids to evaluate the efficacy of stroma-targeted therapies as well as the potential of EC359 to target activated stroma in PC.

20.
Mol Cancer Ther ; 18(8): 1341-1354, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31142661

RESUMO

Leukemia inhibitory factor receptor (LIFR) and its ligand LIF play a critical role in cancer progression, metastasis, stem cell maintenance, and therapy resistance. Here, we describe a rationally designed first-in-class inhibitor of LIFR, EC359, which directly interacts with LIFR to effectively block LIF/LIFR interactions. EC359 treatment exhibits antiproliferative effects, reduces invasiveness and stemness, and promotes apoptosis in triple-negative breast cancer (TNBC) cell lines. The activity of EC359 is dependent on LIF and LIFR expression, and treatment with EC359 attenuated the activation of LIF/LIFR-driven pathways, including STAT3, mTOR, and AKT. Concomitantly, EC359 was also effective in blocking signaling by other LIFR ligands (CTF1, CNTF, and OSM) that interact at LIF/LIFR interface. EC359 significantly reduced tumor progression in TNBC xenografts and patient-derived xenografts (PDX), and reduced proliferation in patient-derived primary TNBC explants. EC359 exhibits distinct pharmacologic advantages, including oral bioavailability, and in vivo stability. Collectively, these data support EC359 as a novel targeted therapeutic that inhibits LIFR oncogenic signaling.See related commentary by Shi et al., p. 1337.


Assuntos
Neoplasias de Mama Triplo Negativas , Linhagem Celular Tumoral , Humanos , Fator Inibidor de Leucemia , Subunidade alfa de Receptor de Fator Inibidor de Leucemia , Receptores de OSM-LIF , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa