Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 618(7965): 557-565, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37198485

RESUMO

Centromeres are critical for cell division, loading CENH3 or CENPA histone variant nucleosomes, directing kinetochore formation and allowing chromosome segregation1,2. Despite their conserved function, centromere size and structure are diverse across species. To understand this centromere paradox3,4, it is necessary to know how centromeric diversity is generated and whether it reflects ancient trans-species variation or, instead, rapid post-speciation divergence. To address these questions, we assembled 346 centromeres from 66 Arabidopsis thaliana and 2 Arabidopsis lyrata accessions, which exhibited a remarkable degree of intra- and inter-species diversity. A. thaliana centromere repeat arrays are embedded in linkage blocks, despite ongoing internal satellite turnover, consistent with roles for unidirectional gene conversion or unequal crossover between sister chromatids in sequence diversification. Additionally, centrophilic ATHILA transposons have recently invaded the satellite arrays. To counter ATHILA invasion, chromosome-specific bursts of satellite homogenization generate higher-order repeats and purge transposons, in line with cycles of repeat evolution. Centromeric sequence changes are even more extreme in comparison between A. thaliana and A. lyrata. Together, our findings identify rapid cycles of transposon invasion and purging through satellite homogenization, which drive centromere evolution and ultimately contribute to speciation.


Assuntos
Arabidopsis , Centrômero , Elementos de DNA Transponíveis , DNA Satélite , Evolução Molecular , Arabidopsis/genética , Arabidopsis/metabolismo , Centrômero/genética , Centrômero/metabolismo , Elementos de DNA Transponíveis/genética , Histonas/genética , Histonas/metabolismo , Nucleossomos/genética , Nucleossomos/metabolismo , DNA Satélite/genética , Conversão Gênica
2.
Genome Res ; 34(2): 161-178, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38485193

RESUMO

Centromeres are essential regions of eukaryotic chromosomes responsible for the formation of kinetochore complexes, which connect to spindle microtubules during cell division. Notably, although centromeres maintain a conserved function in chromosome segregation, the underlying DNA sequences are diverse both within and between species and are predominantly repetitive in nature. The repeat content of centromeres includes high-copy tandem repeats (satellites), and/or specific families of transposons. The functional region of the centromere is defined by loading of a specific histone 3 variant (CENH3), which nucleates the kinetochore and shows dynamic regulation. In many plants, the centromeres are composed of satellite repeat arrays that are densely DNA methylated and invaded by centrophilic retrotransposons. In some cases, the retrotransposons become the sites of CENH3 loading. We review the structure of plant centromeres, including monocentric, holocentric, and metapolycentric architectures, which vary in the number and distribution of kinetochore attachment sites along chromosomes. We discuss how variation in CENH3 loading can drive genome elimination during early cell divisions of plant embryogenesis. We review how epigenetic state may influence centromere identity and discuss evolutionary models that seek to explain the paradoxically rapid change of centromere sequences observed across species, including the potential roles of recombination. We outline putative modes of selection that could act within the centromeres, as well as the role of repeats in driving cycles of centromere evolution. Although our primary focus is on plant genomes, we draw comparisons with animal and fungal centromeres to derive a eukaryote-wide perspective of centromere structure and function.


Assuntos
Centrômero , Retroelementos , Animais , Retroelementos/genética , Centrômero/genética , Cinetocoros , Plantas/genética , Sequências de Repetição em Tandem
3.
Genome Biol ; 25(1): 30, 2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38254210

RESUMO

BACKGROUND: Centromeres load kinetochore complexes onto chromosomes, which mediate spindle attachment and allow segregation during cell division. Although centromeres perform a conserved cellular function, their underlying DNA sequences are highly divergent within and between species. Despite variability in DNA sequence, centromeres are also universally suppressed for meiotic crossover recombination, across eukaryotes. However, the genetic and epigenetic factors responsible for suppression of centromeric crossovers remain to be completely defined. RESULTS: To explore the centromere-proximal meiotic recombination landscape, we map 14,397 crossovers against fully assembled Arabidopsis thaliana (A. thaliana) genomes. A. thaliana centromeres comprise megabase satellite repeat arrays that load nucleosomes containing the CENH3 histone variant. Each chromosome contains a structurally polymorphic region of ~3-4 megabases, which lack crossovers and include the satellite arrays. This polymorphic region is flanked by ~1-2 megabase low-recombination zones. These recombination-suppressed regions are enriched for Gypsy/Ty3 retrotransposons, and additionally contain expressed genes with high genetic diversity that initiate meiotic recombination, yet do not crossover. We map crossovers at high-resolution in proximity to CEN3, which resolves punctate centromere-proximal hotspots that overlap gene islands embedded in heterochromatin. Centromeres are densely DNA methylated and the recombination landscape is remodelled in DNA methylation mutants. We observe that the centromeric low-recombining zones decrease and increase crossovers in CG (met1) and non-CG (cmt3) mutants, respectively, whereas the core non-recombining zones remain suppressed. CONCLUSION: Our work relates the genetic and epigenetic organization of A. thaliana centromeres and flanking pericentromeric heterochromatin to the zones of crossover suppression that surround the CENH3-occupied satellite repeat arrays.


Assuntos
Arabidopsis , Arabidopsis/genética , Metilação de DNA , Heterocromatina , Centrômero , Meiose
4.
Genome Biol Evol ; 14(5)2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35446419

RESUMO

Intracellular transfers of mitochondrial DNA continue to shape nuclear genomes. Chromosome 2 of the model plant Arabidopsis thaliana contains one of the largest known nuclear insertions of mitochondrial DNA (numts). Estimated at over 600 kb in size, this numt is larger than the entire Arabidopsis mitochondrial genome. The primary Arabidopsis nuclear reference genome contains less than half of the numt because of its structural complexity and repetitiveness. Recent data sets generated with improved long-read sequencing technologies (PacBio HiFi) provide an opportunity to finally determine the accurate sequence and structure of this numt. We performed a de novo assembly using sequencing data from recent initiatives to span the Arabidopsis centromeres, producing a gap-free sequence of the Chromosome 2 numt, which is 641 kb in length and has 99.933% nucleotide sequence identity with the actual mitochondrial genome. The numt assembly is consistent with the repetitive structure previously predicted from fiber-based fluorescent in situ hybridization. Nanopore sequencing data indicate that the numt has high levels of cytosine methylation, helping to explain its biased spectrum of nucleotide sequence divergence and supporting previous inferences that it is transcriptionally inactive. The original numt insertion appears to have involved multiple mitochondrial DNA copies with alternative structures that subsequently underwent an additional duplication event within the nuclear genome. This work provides insights into numt evolution, addresses one of the last unresolved regions of the Arabidopsis reference genome, and represents a resource for distinguishing between highly similar numt and mitochondrial sequences in studies of transcription, epigenetic modifications, and de novo mutations.


Assuntos
Arabidopsis , Genoma Mitocondrial , Arabidopsis/genética , Núcleo Celular/genética , DNA Mitocondrial/genética , Hibridização in Situ Fluorescente , Mitocôndrias/genética , Análise de Sequência de DNA
5.
Science ; 374(6569): eabi7489, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34762468

RESUMO

Centromeres attach chromosomes to spindle microtubules during cell division and, despite this conserved role, show paradoxically rapid evolution and are typified by complex repeats. We used long-read sequencing to generate the Col-CEN Arabidopsis thaliana genome assembly that resolves all five centromeres. The centromeres consist of megabase-scale tandemly repeated satellite arrays, which support CENTROMERE SPECIFIC HISTONE H3 (CENH3) occupancy and are densely DNA methylated, with satellite variants private to each chromosome. CENH3 preferentially occupies satellites that show the least amount of divergence and occur in higher-order repeats. The centromeres are invaded by ATHILA retrotransposons, which disrupt genetic and epigenetic organization. Centromeric crossover recombination is suppressed, yet low levels of meiotic DNA double-strand breaks occur that are regulated by DNA methylation. We propose that Arabidopsis centromeres are evolving through cycles of satellite homogenization and retrotransposon-driven diversification.


Assuntos
Arabidopsis/genética , Centrômero/genética , Cromossomos de Plantas/genética , Epigênese Genética , Arabidopsis/ultraestrutura , Centrômero/química , Metilação de DNA , DNA Satélite , Evolução Molecular , Genoma de Planta , Histonas/análise , Meiose , Recombinação Genética , Retroelementos , Análise de Sequência de DNA
6.
Elife ; 92020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33107825

RESUMO

Histone modifications deposited by the Polycomb repressive complex 2 (PRC2) play a critical role in the control of growth, development, and adaptation to environmental fluctuations of most multicellular eukaryotes. The catalytic activity of PRC2 is counteracted by Jumonji-type (JMJ) histone demethylases, which shapes the genomic distribution of H3K27me3. Here, we show that two JMJ histone demethylases in Arabidopsis, EARLY FLOWERING 6 (ELF6) and RELATIVE OF EARLY FLOWERING 6 (REF6), play distinct roles in H3K27me3 and H3K27me1 homeostasis. We show that failure to reset these chromatin marks during sexual reproduction results in the transgenerational inheritance of histone marks, which cause a loss of DNA methylation at heterochromatic loci and transposon activation. Thus, Jumonji-type histone demethylases play a dual role in plants by helping to maintain transcriptional states through development and safeguard genome integrity during sexual reproduction.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Genoma de Planta , Histona Desmetilases com o Domínio Jumonji/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Histonas/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Fatores de Transcrição/genética
7.
Mol Plant Pathol ; 14(2): 158-70, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23083401

RESUMO

Cucumber mosaic virus (CMV) encodes the 2b protein, which plays a role in local and systemic virus movement, symptom induction and suppression of RNA silencing. It also disrupts signalling regulated by salicylic acid and jasmonic acid. CMV induced an increase in tolerance to drought in Arabidopsis thaliana. This was caused by the 2b protein, as transgenic plants expressing this viral factor showed increased drought tolerance, but plants infected with CMVΔ2b, a viral mutant lacking the 2b gene, did not. The silencing effector ARGONAUTE1 (AGO1) controls a microRNA-mediated drought tolerance mechanism and, in this study, we noted that plants (dcl2/3/4 triple mutants) lacking functional short-interfering RNA-mediated silencing were also drought tolerant. However, drought tolerance engendered by CMV may be independent of the silencing suppressor activity of the 2b protein. Although CMV infection did not alter the accumulation of the drought response hormone abscisic acid (ABA), 2b-transgenic and ago1-mutant seeds were hypersensitive to ABA-mediated inhibition of germination. However, the induction of ABA-regulated genes in 2b-transgenic and CMV-infected plants was inhibited more strongly than in ago1-mutant plants. The virus engenders drought tolerance by altering the characteristics of the roots and not of the aerial tissues as, compared with the leaves of silencing mutants, leaves excised from CMV-infected or 2b-transgenic plants showed greater stomatal permeability and lost water more rapidly. This further indicates that CMV-induced drought tolerance is not mediated via a change in the silencing-regulated drought response mechanism. Under natural conditions, virus-induced drought tolerance may serve viruses by aiding susceptible hosts to survive periods of environmental stress.


Assuntos
Ácido Abscísico/metabolismo , Arabidopsis/fisiologia , Cucumovirus/metabolismo , Secas , Genes Supressores , Interferência de RNA , Transdução de Sinais , Arabidopsis/genética , Arabidopsis/virologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Regulação da Expressão Gênica de Plantas , Germinação , Estômatos de Plantas/fisiologia , Plantas Geneticamente Modificadas , Proteínas Virais/metabolismo , Água
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa