Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Nature ; 598(7881): 495-499, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34497423

RESUMO

Plants deploy cell-surface and intracellular leucine rich-repeat domain (LRR) immune receptors to detect pathogens1. LRR receptor kinases and LRR receptor proteins at the plasma membrane recognize microorganism-derived molecules to elicit pattern-triggered immunity (PTI), whereas nucleotide-binding LRR proteins detect microbial effectors inside cells to confer effector-triggered immunity (ETI). Although PTI and ETI are initiated in different host cell compartments, they rely on the transcriptional activation of similar sets of genes2, suggesting pathway convergence upstream of nuclear events. Here we report that PTI triggered by the Arabidopsis LRR receptor protein RLP23 requires signalling-competent dimers of the lipase-like proteins EDS1 and PAD4, and of ADR1 family helper nucleotide-binding LRRs, which are all components of ETI. The cell-surface LRR receptor kinase SOBIR1 links RLP23 with EDS1, PAD4 and ADR1 proteins, suggesting the formation of supramolecular complexes containing PTI receptors and transducers at the inner side of the plasma membrane. We detected similar evolutionary patterns in LRR receptor protein and nucleotide-binding LRR genes across Arabidopsis accessions; overall higher levels of variation in LRR receptor proteins than in LRR receptor kinases are consistent with distinct roles of these two receptor families in plant immunity. We propose that the EDS1-PAD4-ADR1 node is a convergence point for defence signalling cascades, activated by both surface-resident and intracellular LRR receptors, in conferring pathogen immunity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Hidrolases de Éster Carboxílico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Imunidade Vegetal , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Arabidopsis/química , Hidrolases de Éster Carboxílico/química , Proteínas de Ligação a DNA/química , Domínios Proteicos , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Multimerização Proteica , Proteínas Serina-Treonina Quinases/química , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo
2.
EMBO J ; 40(24): e108684, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34726281

RESUMO

Plant photoperiodic growth is coordinated by interactions between circadian clock and light signaling networks. How post-translational modifications of clock proteins affect these interactions to mediate rhythmic growth remains unclear. Here, we identify five phosphorylation sites in the Arabidopsis core clock protein TIMING OF CAB EXPRESSION 1 (TOC1) which when mutated to alanine eliminate detectable phosphorylation. The TOC1 phospho-mutant fails to fully rescue the clock, growth, and flowering phenotypes of the toc1 mutant. Further, the TOC1 phospho-mutant shows advanced phase, a faster degradation rate, reduced interactions with PHYTOCHROME-INTERACTING FACTOR 3 (PIF3) and HISTONE DEACETYLASE 15 (HDA15), and poor binding at pre-dawn hypocotyl growth-related genes (PHGs), leading to a net de-repression of hypocotyl growth. NUCLEAR FACTOR Y subunits B and C (NF-YB/C) stabilize TOC1 at target promoters, and this novel trimeric complex (NF-TOC1) acts as a transcriptional co-repressor with HDA15 to inhibit PIF-mediated hypocotyl elongation. Collectively, we identify a molecular mechanism suggesting how phosphorylation of TOC1 alters its phase, stability, and physical interactions with co-regulators to precisely phase PHG expression to control photoperiodic hypocotyl growth.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Fator de Ligação a CCAAT/metabolismo , Mutação , Fatores de Transcrição/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas , Histona Desacetilases/metabolismo , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/metabolismo , Fosforilação , Proteólise , Transdução de Sinais , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
3.
Plant Cell ; 34(10): 3512-3542, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-35976122

RESUMO

The liverwort Marchantia polymorpha has been utilized as a model for biological studies since the 18th century. In the past few decades, there has been a Renaissance in its utilization in genomic and genetic approaches to investigating physiological, developmental, and evolutionary aspects of land plant biology. The reasons for its adoption are similar to those of other genetic models, e.g. simple cultivation, ready access via its worldwide distribution, ease of crossing, facile genetics, and more recently, efficient transformation, genome editing, and genomic resources. The haploid gametophyte dominant life cycle of M. polymorpha is conducive to forward genetic approaches. The lack of ancient whole-genome duplications within liverworts facilitates reverse genetic approaches, and possibly related to this genomic stability, liverworts possess sex chromosomes that evolved in the ancestral liverwort. As a representative of one of the three bryophyte lineages, its phylogenetic position allows comparative approaches to provide insights into ancestral land plants. Given the karyotype and genome stability within liverworts, the resources developed for M. polymorpha have facilitated the development of related species as models for biological processes lacking in M. polymorpha.


Assuntos
Embriófitas , Marchantia , Evolução Biológica , Células Germinativas Vegetais , Marchantia/genética , Filogenia
4.
EMBO J ; 39(3): e101625, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31556459

RESUMO

Meiosis is key to sexual reproduction and genetic diversity. Here, we show that the Arabidopsis cyclin-dependent kinase Cdk1/Cdk2 homolog CDKA;1 is an important regulator of meiosis needed for several aspects of meiosis such as chromosome synapsis. We identify the chromosome axis protein ASYNAPTIC 1 (ASY1), the Arabidopsis homolog of Hop1 (homolog pairing 1), essential for synaptonemal complex formation, as a target of CDKA;1. The phosphorylation of ASY1 is required for its recruitment to the chromosome axis via ASYNAPTIC 3 (ASY3), the Arabidopsis reductional division 1 (Red1) homolog, counteracting the disassembly activity of the AAA+ ATPase PACHYTENE CHECKPOINT 2 (PCH2). Furthermore, we have identified the closure motif in ASY1, typical for HORMA domain proteins, and provide evidence that the phosphorylation of ASY1 regulates the putative self-polymerization of ASY1 along the chromosome axis. Hence, the phosphorylation of ASY1 by CDKA;1 appears to be a two-pronged mechanism to initiate chromosome axis formation in meiosis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Proteínas de Ligação a DNA/metabolismo , Meiose , Adenosina Trifosfatases/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sítios de Ligação , Cromossomos de Plantas/genética , Cromossomos de Plantas/metabolismo , Quinases Ciclina-Dependentes/genética , Proteínas de Ligação a DNA/química , Mutação , Fosforilação , Ligação Proteica , Multimerização Proteica
5.
J Virol ; 97(6): e0022123, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37199623

RESUMO

Plant viruses depend on a number of host factors for successful infection. Deficiency of critical host factors confers recessively inherited viral resistance in plants. For example, loss of Essential for poteXvirus Accumulation 1 (EXA1) in Arabidopsis thaliana confers resistance to potexviruses. However, the molecular mechanism of how EXA1 assists potexvirus infection remains largely unknown. Previous studies reported that the salicylic acid (SA) pathway is upregulated in exa1 mutants, and EXA1 modulates hypersensitive response-related cell death during EDS1-dependent effector-triggered immunity. Here, we show that exa1-mediated viral resistance is mostly independent of SA and EDS1 pathways. We demonstrate that Arabidopsis EXA1 interacts with three members of the eukaryotic translation initiation factor 4E (eIF4E) family, eIF4E1, eIFiso4E, and novel cap-binding protein (nCBP), through the eIF4E-binding motif (4EBM). Expression of EXA1 in exa1 mutants restored infection by the potexvirus Plantago asiatica mosaic virus (PlAMV), but EXA1 with mutations in 4EBM only partially restored infection. In virus inoculation experiments using Arabidopsis knockout mutants, EXA1 promoted PlAMV infection in concert with nCBP, but the functions of eIFiso4E and nCBP in promoting PlAMV infection were redundant. By contrast, the promotion of PlAMV infection by eIF4E1 was, at least partially, EXA1 independent. Taken together, our results imply that the interaction of EXA1-eIF4E family members is essential for efficient PlAMV multiplication, although specific roles of three eIF4E family members in PlAMV infection differ. IMPORTANCE The genus Potexvirus comprises a group of plant RNA viruses, including viruses that cause serious damage to agricultural crops. We previously showed that loss of Essential for poteXvirus Accumulation 1 (EXA1) in Arabidopsis thaliana confers resistance to potexviruses. EXA1 may thus play a critical role in the success of potexvirus infection; hence, elucidation of its mechanism of action is crucial for understanding the infection process of potexviruses and for effective viral control. Previous studies reported that loss of EXA1 enhances plant immune responses, but our results indicate that this is not the primary mechanism of exa1-mediated viral resistance. Here, we show that Arabidopsis EXA1 assists infection by the potexvirus Plantago asiatica mosaic virus (PlAMV) by interacting with the eukaryotic translation initiation factor 4E family. Our results imply that EXA1 contributes to PlAMV multiplication by regulating translation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fator de Iniciação 4E em Eucariotos , Doenças das Plantas , Potexvirus , Arabidopsis/metabolismo , Arabidopsis/virologia , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Doenças das Plantas/genética , Potexvirus/fisiologia , Proteínas de Arabidopsis/metabolismo , Resistência à Doença/genética , Ligação Proteica , Motivos de Aminoácidos , Deleção de Genes , Células Vegetais/virologia , Biossíntese de Proteínas/genética
6.
New Phytol ; 241(4): 1747-1762, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38037456

RESUMO

Ustilago maydis is a biotrophic fungus that causes tumor formation on all aerial parts of maize. U. maydis secretes effector proteins during penetration and colonization to successfully overcome the plant immune response and reprogram host physiology to promote infection. In this study, we functionally characterized the U. maydis effector protein Topless (TPL) interacting protein 6 (Tip6). We found that Tip6 interacts with the N-terminus of RELK2 through its two Ethylene-responsive element binding factor-associated amphiphilic repression (EAR) motifs. We show that the EAR motifs are essential for the virulence function of Tip6 and critical for altering the nuclear distribution pattern of RELK2. We propose that Tip6 mimics the recruitment of RELK2 by plant repressor proteins, thus disrupting host transcriptional regulation. We show that a large group of AP2/ERF B1 subfamily transcription factors are misregulated in the presence of Tip6. Our study suggests a regulatory mechanism where the U. maydis effector Tip6 utilizes repressive domains to recruit the corepressor RELK2 to disrupt the transcriptional networks of the host plant.


Assuntos
Basidiomycota , Doenças das Plantas , Ustilago , Doenças das Plantas/microbiologia , Zea mays/microbiologia , Ustilago/metabolismo , Proteínas Correpressoras/metabolismo , Carcinogênese , Proteínas Fúngicas/metabolismo
7.
Plant Physiol ; 191(1): 626-642, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36227084

RESUMO

Toll/Interleukin-1 receptor (TIR) domains are integral to immune systems across all kingdoms. In plants, TIRs are present in nucleotide-binding leucine-rich repeat (NLR) immune receptors, NLR-like, and TIR-only proteins. Although TIR-NLR and TIR signaling in plants require the ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) protein family, TIRs persist in species that have no EDS1 members. To assess whether particular TIR groups evolved with EDS1, we searched for TIR-EDS1 co-occurrence patterns. Using a large-scale phylogenetic analysis of TIR domains from 39 algal and land plant species, we identified 4 TIR families that are shared by several plant orders. One group occurred in TIR-NLRs of eudicots and another in TIR-NLRs across eudicots and magnoliids. Two further groups were more widespread. A conserved TIR-only group co-occurred with EDS1 and members of this group elicit EDS1-dependent cell death. In contrast, a maize (Zea mays) representative of TIR proteins with tetratricopeptide repeats was also present in species without EDS1 and induced EDS1-independent cell death. Our data provide a phylogeny-based plant TIR classification and identify TIRs that appear to have evolved with and are dependent on EDS1, while others have EDS1-independent activity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Ligação a DNA , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Suscetibilidade a Doenças , Proteínas de Ligação a DNA/metabolismo , Filogenia , Doenças das Plantas/genética , Imunidade Vegetal/fisiologia
8.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33963081

RESUMO

Nitrogen (N) is an essential nutrient that affects multiple plant developmental processes, including flowering. As flowering requires resources to develop sink tissues for reproduction, nutrient availability is tightly linked to this process. Low N levels accelerate floral transition; however, the molecular mechanisms underlying this response are not well understood. Here, we identify the FLOWERING BHLH 4 (FBH4) transcription factor as a key regulator of N-responsive flowering in Arabidopsis Low N-induced early flowering is compromised in fbh quadruple mutants. We found that FBH4 is a highly phosphorylated protein and that FBH4 phosphorylation levels decrease under low N conditions. In addition, decreased phosphorylation promotes FBH4 nuclear localization and transcriptional activation of the direct target CONSTANS (CO) and downstream florigen FLOWERING LOCUS T (FT) genes. Moreover, we demonstrate that the evolutionarily conserved cellular fuel sensor SNF1-RELATED KINASE 1 (SnRK1), whose kinase activity is down-regulated under low N conditions, directly phosphorylates FBH4. SnRK1 negatively regulates CO and FT transcript levels under high N conditions. Together, these results reveal a mechanism by which N levels may fine-tune FBH4 nuclear localization by adjusting the phosphorylation state to modulate flowering time. In addition to its role in flowering regulation, we also showed that FBH4 was involved in low N-induced up-regulation of nutrient recycling and remobilization-related gene expression. Thus, our findings provide insight into N-responsive growth phase transitions and optimization of plant fitness under nutrient-limited conditions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Flores/metabolismo , Nitrogênio/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Fosforilação , Fotoperíodo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional/genética
9.
Plant J ; 110(5): 1415-1432, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35324052

RESUMO

Arabidopsis pathogen effector-triggered immunity (ETI) is controlled by a family of three lipase-like proteins (EDS1, PAD4, and SAG101) and two subfamilies of HET-S/LOB-B (HeLo)-domain "helper" nucleotide-binding/leucine-rich repeats (ADR1s and NRG1s). EDS1-PAD4 dimers cooperate with ADR1s, and EDS1-SAG101 dimers with NRG1s, in two separate defense-promoting modules. EDS1-PAD4-ADR1 and EDS1-SAG101-NRG1 complexes were detected in immune-activated leaf extracts but the molecular determinants for specific complex formation and function remain unknown. EDS1 signaling is mediated by a C-terminal EP domain (EPD) surface surrounding a cavity formed by the heterodimer. Here we investigated whether the EPDs of PAD4 and SAG101 contribute to EDS1 dimer functions. Using a structure-guided approach, we undertook a comprehensive mutational analysis of Arabidopsis PAD4. We identify two conserved residues (Arg314 and Lys380) lining the PAD4 EPD cavity that are essential for EDS1-PAD4-mediated pathogen resistance, but are dispensable for the PAD4-mediated restriction of green peach aphid infestation. Positionally equivalent Met304 and Arg373 at the SAG101 EPD cavity are required for EDS1-SAG101 promotion of ETI-related cell death. In a PAD4 and SAG101 interactome analysis of ETI-activated tissues, PAD4R314A and SAG101M304R EPD variants maintain interaction with EDS1 but lose association, respectively, with helper nucleotide-binding/leucine-rich repeats ADR1-L1 and NRG1.1, and other immune-related proteins. Our data reveal a fundamental contribution of similar but non-identical PAD4 and SAG101 EPD surfaces to specific EDS1 dimer protein interactions and pathogen immunity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Leucina/metabolismo , Nucleotídeos/metabolismo , Doenças das Plantas , Imunidade Vegetal/genética
10.
New Phytol ; 237(4): 1285-1301, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36319610

RESUMO

Expression of OXIDATIVE SIGNAL-INDUCIBLE1 (OXI1) is induced by a number of stress conditions and regulates the interaction of plants with pathogenic and beneficial microbes. In this work, we generated Arabidopsis OXI1 knockout and genomic OXI1 overexpression lines and show by transcriptome, proteome, and metabolome analysis that OXI1 triggers ALD1, SARD4, and FMO1 expressions to promote the biosynthesis of pipecolic acid (Pip) and N-hydroxypipecolic acid (NHP). OXI1 contributes to enhanced immunity by induced SA biosynthesis via CBP60g-induced expression of SID2 and camalexin accumulation via WRKY33-targeted transcription of PAD3. OXI1 regulates genes involved in reactive oxygen species (ROS) generation such as RbohD and RbohF. OXI1 knock out plants show enhanced expression of nuclear and chloroplast genes of photosynthesis and enhanced growth under ambient conditions, while OXI1 overexpressing plants accumulate NHP, SA, camalexin, and ROS and show a gain-of-function (GOF) cell death phenotype and enhanced pathogen resistance. The OXI1 GOF phenotypes are completely suppressed when compromising N-hydroxypipecolic acid (NHP) synthesis in the fmo1 or ald1 background, showing that OXI1 regulation of immunity is mediated via the NHP pathway. Overall, these results show that OXI1 plays a key role in basal and effector-triggered plant immunity by regulating defense and programmed cell death via biosynthesis of salicylic acid, N-hydroxypipecolic acid, and camalexin.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse Oxidativo , Doenças das Plantas , Imunidade Vegetal , Espécies Reativas de Oxigênio/metabolismo , Ácido Salicílico/metabolismo
11.
J Exp Bot ; 74(15): 4736-4750, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37225161

RESUMO

Plant pathogens secrete effectors, which target host proteins to facilitate infection. The Ustilago maydis effector UmSee1 is required for tumor formation in the leaf during infection of maize. UmSee1 interacts with maize SGT1 (suppressor of G2 allele of skp1) and blocks its phosphorylation in vivo. In the absence of UmSee1, U. maydis cannot trigger tumor formation in the bundle sheath. However, it remains unclear which host processes are manipulated by UmSee1 and the UmSee1-SGT1 interaction to cause the observed phenotype. Proximity-dependent protein labeling involving the turbo biotin ligase tag (TurboID) for proximal labeling of proteins is a powerful tool for identifying the protein interactome. We have generated transgenic U. maydis that secretes biotin ligase-fused See1 effector (UmSee1-TurboID-3HA) directly into maize cells. This approach, in combination with conventional co-immunoprecipitation, allowed the identification of additional UmSee1 interactors in maize cells. Collectively, our data identified three ubiquitin-proteasome pathway-related proteins (ZmSIP1, ZmSIP2, and ZmSIP3) that either interact with or are close to UmSee1 during host infection of maize with U. maydis. ZmSIP3 represents a cell cycle regulator whose degradation appears to be promoted in the presence of UmSee1. Our data provide a possible explanation of the requirement for UmSee1 in tumor formation during U. maydis-Zea mays interaction.


Assuntos
Neoplasias , Ustilago , Doenças das Plantas/microbiologia , Zea mays/metabolismo , Ustilago/genética , Ustilago/metabolismo , Biotina/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Ligases/metabolismo
12.
Plant Cell ; 32(5): 1479-1500, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32132131

RESUMO

Several pathways conferring environmental flowering responses in Arabidopsis (Arabidopsis thaliana) converge on developmental processes that mediate the floral transition in the shoot apical meristem. Many characterized mutations disrupt these environmental responses, but downstream developmental processes have been more refractory to mutagenesis. Here, we constructed a quintuple mutant impaired in several environmental pathways and showed that it possesses severely reduced flowering responses to changes in photoperiod and ambient temperature. RNA-sequencing (RNA-seq) analysis of the quintuple mutant showed that the expression of genes encoding gibberellin biosynthesis enzymes and transcription factors involved in the age pathway correlates with flowering. Mutagenesis of the quintuple mutant generated two late-flowering mutants, quintuple ems1 (qem1) and qem2 The mutated genes were identified by isogenic mapping and transgenic complementation. The qem1 mutant is an allele of the gibberellin 20-oxidase gene ga20ox2, confirming the importance of gibberellin for flowering in the absence of environmental responses. By contrast, qem2 is impaired in CHROMATIN REMODELING4 (CHR4), which has not been genetically implicated in floral induction. Using co-immunoprecipitation, RNA-seq, and chromatin immunoprecipitation sequencing, we show that CHR4 interacts with transcription factors involved in floral meristem identity and affects the expression of key floral regulators. Therefore, CHR4 mediates the response to endogenous flowering pathways in the inflorescence meristem to promote floral identity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Ligação a DNA/metabolismo , Meio Ambiente , Flores/genética , Flores/fisiologia , Mutagênese/genética , Mutação/genética , Proteínas de Arabidopsis/genética , DNA Helicases , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Loci Gênicos , Genoma de Planta , Histonas/metabolismo , Meristema/genética , Anotação de Sequência Molecular , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Ligação Proteica , Fatores de Tempo
13.
Plant Cell ; 32(4): 1063-1080, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32034035

RESUMO

Reactive oxygen species (ROS) are important messengers in eukaryotic organisms, and their production is tightly controlled. Active extracellular ROS production by NADPH oxidases in plants is triggered by receptor-like protein kinase-dependent signaling networks. Here, we show that CYSTEINE-RICH RLK2 (CRK2) kinase activity is required for plant growth and CRK2 exists in a preformed complex with the NADPH oxidase RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD) in Arabidopsis (Arabidopsis thaliana). Functional CRK2 is required for the full elicitor-induced ROS burst, and consequently the crk2 mutant is impaired in defense against the bacterial pathogen Pseudomonas syringae pv tomato DC3000. Our work demonstrates that CRK2 regulates plant innate immunity. We identified in vitro CRK2-dependent phosphorylation sites in the C-terminal region of RBOHD. Phosphorylation of S703 RBOHD is enhanced upon flg22 treatment, and substitution of S703 with Ala reduced ROS production in Arabidopsis. Phylogenetic analysis suggests that phospho-sites in the C-terminal region of RBOHD are conserved throughout the plant lineage and between animals and plants. We propose that regulation of NADPH oxidase activity by phosphorylation of the C-terminal region might be an ancient mechanism and that CRK2 is an important element in regulating microbe-associated molecular pattern-triggered ROS production.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , NADPH Oxidases/química , NADPH Oxidases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Arabidopsis/efeitos dos fármacos , Arabidopsis/microbiologia , Proteínas de Arabidopsis/química , Sequência Conservada , Citosol/efeitos dos fármacos , Citosol/metabolismo , Resistência à Doença , Flagelina/farmacologia , Células HEK293 , Humanos , Modelos Biológicos , Moléculas com Motivos Associados a Patógenos/metabolismo , Fosforilação/efeitos dos fármacos , Fosfosserina/metabolismo , Desenvolvimento Vegetal/efeitos dos fármacos , Doenças das Plantas/microbiologia , Ligação Proteica/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/química , Pseudomonas syringae/patogenicidade , Pseudomonas syringae/fisiologia , Virulência/efeitos dos fármacos
14.
New Phytol ; 235(2): 786-800, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35396742

RESUMO

Marchantia polymorpha is a model liverwort and its overall low genetic redundancy is advantageous for dissecting complex pathways. Proximity-dependent in vivo biotin-labelling methods have emerged as powerful interactomics tools in recent years. However, interactomics studies applying proximity labelling are currently limited to angiosperm species in plants. Here, we established and evaluated a miniTurbo-based interactomics method in M. polymorpha using MpSYP12A and MpSYP13B, two plasma membrane-localized SNARE proteins, as baits. We show that our method yields a manifold of potential interactors of MpSYP12A and MpSYP13B compared to a coimmunoprecipitation approach. Our method could capture specific candidates for each SNARE. We conclude that a miniTurbo-based method is a feasible tool for interactomics in M. polymorpha and potentially applicable to other model bryophytes. Our interactome dataset on MpSYP12A and MpSYP13B will be a useful resource to elucidate the evolution of SNARE functions.


Assuntos
Marchantia , Membrana Celular/metabolismo , Marchantia/genética , Marchantia/metabolismo , Proteínas SNARE/metabolismo
15.
New Phytol ; 236(2): 729-744, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35832005

RESUMO

Arabis alpina is a polycarpic perennial, in which PERPETUAL FLOWERING1 (PEP1) regulates flowering and perennial traits in a vernalization-dependent manner. Mutagenesis screens of the pep1 mutant established the role of other flowering time regulators in PEP1-parallel pathways. Here we characterized three allelic enhancers of pep1 (eop002, 085 and 091) which flower early. We mapped the causal mutations and complemented mutants with the identified gene. Using quantitative reverse transcriptase PCR and reporter lines, we determined the protein spatiotemporal expression patterns and localization within the cell. We also characterized its role in Arabidopsis thaliana using CRISPR and in A. alpina by introgressing mutant alleles into a wild-type background. These mutants carried lesions in an AAA+ ATPase of unknown function, FLOWERING REPRESSOR AAA+ ATPase 1 (AaFRAT1). AaFRAT1 was detected in the vasculature of young leaf primordia and the rib zone of flowering shoot apical meristems. At the subcellular level, AaFRAT1 was localized at the interphase between the endoplasmic reticulum and peroxisomes. Introgression lines carrying Aafrat1 alleles required less vernalization to flower and reduced number of vegetative axillary branches. By contrast, A. thaliana CRISPR lines showed weak flowering phenotypes. AaFRAT1 contributes to flowering time regulation and the perennial growth habit of A. alpina.


Assuntos
Arabidopsis , Arabis , Adenosina Trifosfatases/metabolismo , Arabidopsis/metabolismo , Arabis/genética , Arabis/metabolismo , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Meristema/metabolismo
16.
Plant Physiol ; 187(2): 981-995, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34608954

RESUMO

Photosensory adaptation, which can be classified as sensor or effector adaptation, optimizes the light sensing of living organisms by tuning their sensitivity to changing light conditions. During the phototropic response in Arabidopsis (Arabidopsis thaliana), the light-dependent expression controls of blue-light (BL) photoreceptor phototropin 1 (phot1) and its modulator ROOT PHOTOTROPISM2 (RPT2) are known as the molecular mechanisms underlying sensor adaptation. However, little is known about effector adaption in plant phototropism. Here, we show that control of the phosphorylation status of NONPHOTOTROPIC HYPOCOTYL3 (NPH3) leads to effector adaptation in hypocotyl phototropism. We generated unphosphorable and phosphomimetic NPH3 proteins on seven phosphorylation sites in the etiolated seedlings of Arabidopsis. Unphosphorable NPH3 showed a shortening of its retention time in the cytosol and caused an inability to adapt to very low fluence rates of BL (∼10-5 µmol m-2 s-1) during the phototropic response. In contrast, the phosphomimetic NPH3 proteins had a lengthened retention time in the cytosol and could not enable the adaptation to BL at fluence rates of 10-3 µmol m-2 s-1 or more. Our results indicate that the activation level of phot1 and the corresponding phosphorylation level of NPH3 determine the dissociation rate and the reassociation rate of NPH3 on the plasma membrane, respectively. These mechanisms may moderately maintain the active state of phot1 signaling across a broad range of BL intensities and contribute to the photosensory adaptation of phot1 signaling during the phototropic response in hypocotyls.


Assuntos
Arabidopsis , Fototropismo , Arabidopsis/genética , Arabidopsis/fisiologia , Fosforilação , Fototropismo/fisiologia , Transdução de Sinais
17.
Plant Cell Physiol ; 62(11): 1718-1727, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34383076

RESUMO

Agrobacterium-mediated transient gene expression is a rapid and useful approach for characterizing functions of gene products in planta. However, the practicability of the method in the model liverwort Marchantia polymorpha has not yet been thoroughly described. Here we report a simple and robust method for Agrobacterium-mediated transient transformation of Marchantia thalli and its applicability. When thalli of M. polymorpha were co-cultured with Agrobacterium tumefaciens carrying ß-glucuronidase (GUS) genes, GUS staining was observed primarily in assimilatory filaments and rhizoids. GUS activity was detected 2 days after infection and saturated 3 days after infection. We were able to transiently co-express fluorescently tagged proteins with proper localizations. Furthermore, we demonstrate that our method can be used as a novel pathosystem to study liverwort-bacteria interactions. We also provide evidence that air chambers support bacterial colonization.


Assuntos
Agrobacterium tumefaciens/fisiologia , Marchantia/genética , Plantas Geneticamente Modificadas/genética , Transdução Genética/métodos , Transformação Genética , Marchantia/microbiologia
19.
Plant J ; 100(2): 411-429, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31276249

RESUMO

To accelerate the isolation of plant protein complexes and study cellular localization and interaction of their components, an improved recombineering protocol is described for simple and fast site-directed modification of plant genes in bacterial artificial chromosomes (BACs). Coding sequences of fluorescent and affinity tags were inserted into genes and transferred together with flanking genomic sequences of desired size by recombination into Agrobacterium plant transformation vectors using three steps of E. coli transformation with PCR-amplified DNA fragments. Application of fast-track recombineering is illustrated by the simultaneous labelling of CYCLIN-DEPENDENT KINASE D (CDKD) and CYCLIN H (CYCH) subunits of kinase module of TFIIH general transcription factor and the CDKD-activating CDKF;1 kinase with green fluorescent protein (GFP) and mCherry (green and red fluorescent protein) tags, and a PIPL (His18 -StrepII-HA) epitope. Functionality of modified CDKF;1 gene constructs is verified by complementation of corresponding T-DNA insertion mutation. Interaction of CYCH with all three known CDKD homologues is confirmed by their co-localization and co-immunoprecipitation. Affinity purification and mass spectrometry analyses of CDKD;2, CYCH, and DNA-replication-coupled HISTONE H3.1 validate their association with conserved TFIIH subunits and components of CHROMATIN ASSEMBLY FACTOR 1, respectively. The results document that simple modification of plant gene products with suitable tags by fast-track recombineering is well suited to promote a wide range of protein interaction and proteomics studies.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Engenharia Genética/métodos , Arabidopsis/citologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cromossomos Artificiais Bacterianos/genética , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Genes Reporter , Proteínas de Fluorescência Verde , Histonas/genética , Histonas/metabolismo , Proteínas Luminescentes , Mutagênese Insercional , Plantas Geneticamente Modificadas , Recombinação Genética , Proteína Vermelha Fluorescente
20.
Plant Cell Physiol ; 61(2): 265-275, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31560390

RESUMO

The evolution of adaptive interactions with beneficial, neutral and detrimental microbes was one of the key features enabling plant terrestrialization. Extensive studies have revealed conserved and unique molecular mechanisms underlying plant-microbe interactions across different plant species; however, most insights gleaned to date have been limited to seed plants. The liverwort Marchantia polymorpha, a descendant of early diverging land plants, is gaining in popularity as an advantageous model system to understand land plant evolution. However, studying evolutionary molecular plant-microbe interactions in this model is hampered by the small number of pathogens known to infect M. polymorpha. Here, we describe four pathogenic fungal strains, Irpex lacteus Marchantia-infectious (MI)1, Phaeophlebiopsis peniophoroides MI2, Bjerkandera adusta MI3 and B. adusta MI4, isolated from diseased M. polymorpha. We demonstrate that salicylic acid (SA) treatment of M. polymorpha promotes infection of the I. lacteus MI1 that is likely to adopt a necrotrophic lifestyle, while this effect is suppressed by co-treatment with the bioactive jasmonate in M. polymorpha, dinor-cis-12-oxo-phytodienoic acid (dn-OPDA), suggesting that antagonistic interactions between SA and oxylipin pathways during plant-fungus interactions are ancient and were established already in liverworts.


Assuntos
Antagonismo de Drogas , Fungos/isolamento & purificação , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/fisiologia , Marchantia/microbiologia , Oxilipinas/antagonistas & inibidores , Doenças das Plantas/microbiologia , Ácido Salicílico/antagonistas & inibidores , Ciclopentanos , Evolução Molecular , Ácidos Graxos Insaturados/metabolismo , Fungos/classificação , Fungos/efeitos dos fármacos , Fungos/patogenicidade , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno/genética , Oxilipinas/farmacologia , Doenças das Plantas/terapia , Ácido Salicílico/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa