Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
J Am Chem Soc ; 146(15): 10591-10598, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38570931

RESUMO

Ag nanoparticles have garnered significant attention for their excellent plasmonic properties and potential use as plasmonic cavities, primarily because of their intrinsically low ohmic losses and optical properties in the visible range. These are particularly crucial in systems involving quantum dots that absorb light at low wavelengths, where the need for a high threshold energy of interband transitions necessitates the incorporation of Ag nanostructures. However, the synthesis of Ag nanoparticles still encounters challenges in achieving structural uniformity and monodispersity, along with chemical stability, consequentially inducing inconsistent and poorly reliable optical responses. Here, we present a two-step approach for synthesizing highly uniform spherical Ag nanoparticles involving depletion-induced flocculation and Cu(II)-mediated oxidative etching. We found that the selective flocculation of multitwinned Ag nanocrystals significantly enhances the uniformity of the resulting Ag nanostructures, leaving behind only single-crystalline and single-twinned nanostructures. Subsequent oxidative etching, in which cupric ions are directly involved in the reaction, was designed based on Pourbaix diagrams to proceed following thermodynamically favorable states and circumvent the generation of reactive chemical species such as H2O2. This leads to perfectly spherical shapes of final Ag nanoparticles with a synthetic yield of 99.5% and additionally reduces the overall reaction time. Furthermore, we explore the potential applications of these monodisperse Ag nanospheres as uniform plasmonic cavities. The fabricated Ag nanosphere films uniformly enhanced the photoluminescence of InP/ZnSe/ZnS quantum dots, showcasing their capabilities in exhibiting consistent plasmonic responses across a large area.

2.
J Am Chem Soc ; 146(20): 14012-14021, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38738871

RESUMO

Plasmonic nanoparticles with an externally open nanogap can localize the electromagnetic (EM) field inside the gap and directly detect the target via the open nanogap with surface-enhanced Raman scattering (SERS). It would be beneficial to design and synthesize the open gap nanoprobes in a high yield for obtaining uniform and quantitative signals from randomly oriented nanoparticles and utilizing these particles for direct SERS analysis. Here, we report a facile strategy to synthesize open cross-gap (X-gap) nanocubes (OXNCs) with size- and EM field-tunable gaps in a high yield. The site-specific growth of Au budding structures at the corners of the AuNC using the principle that the Au deposition rate is faster than the surface diffusion rate of the adatoms allows for a uniform X-gap formation. The average SERS enhancement factor (EF) for the OXNCs with 2.6 nm X-gaps was 1.2 × 109, and the EFs were narrowly distributed within 1 order of magnitude for ∼93% of the measured OXNCs. OXNCs consistently displayed strong EM field enhancement on large particle surfaces for widely varying incident light polarization directions, and this can be attributed to the symmetric X-gap geometry and the availability of these gaps on all 6 faces of a cube. Finally, the OXNC probes with varying X-gap sizes have been utilized in directly detecting biomolecules with varying sizes without Raman dyes. The concept, synthetic method, and biosensing results shown here with OXNCs pave the way for designing, synthesizing, and utilizing plasmonic nanoparticles for selective, quantitative molecular-fingerprint Raman sensing and imaging applications.

3.
Acc Chem Res ; 56(16): 2139-2150, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37522593

RESUMO

ConspectusPlasmonic metal nanostructures have been extensively developed over the past few decades because of their ability to confine light within the surfaces and manipulate strong light-matter interactions. The light energy stored by plasmonic nanomaterials in the form of surface plasmons can be utilized to initiate chemical reactions, so-called plasmon-induced catalysis, which stresses the importance of understanding the surface chemistry of the plasmonic materials. Nevertheless, only physical interpretation of plasmonic behaviors has been a dominant theme, largely excluding chemical intuitions that facilitate understanding of plasmonic systems from molecular perspectives. To overcome and address the lack of this complementary understanding based on molecular viewpoints, in this Account we provide a new concept encompassing the well-developed physics of plasmonics and the corresponding surface chemistry while reviewing and discussing related references. Inspired by Roald Hoffmann's descriptions of solid-state surfaces based on the molecular orbital picture, we treat molecular interfaces of plasmonic metal nanostructures as a series of metal-ligand complexes. Accordingly, the effects of the surface ligands can be described by bisecting them into electronic and steric contributions to the systems. By exploration of the quality of orbital overlaps and the symmetry of the plasmonic systems, electronic effects of surface ligands on localized surface plasmon resonances (LSPRs), surface diffusion rates, and hot-carrier transfer mechanisms are investigated. Specifically, the propensity of ligands to donate electrons in a σ-bonding manner can change the LSPR by shifting the density of states near the Fermi level, whereas other types of ligands donating or accepting electrons in a π-bonding manner modulate surface diffusion rates by affecting the metal-metal bond strength. In addition, the formation of metal-ligand bonds facilitates direct hot-carrier transfer by forming a sort of molecular orbital between a plasmonic structure and ligands. Furthermore, effects of steric environments are discussed in terms of ligand-ligand and ligand-surface nonbonding interactions. The steric hindrance allows for controlling the accessibility of the surrounding chemical species toward the metal surface by modulating the packing density of ligands and generating repulsive interactions with the surface atoms. This unconventional approach of considering the plasmonic system as a delocalized molecular entity could establish a basis for integrating chemical intuition with physical phenomena. Our chemist's outlook on a molecular interface of the plasmonic surface can provide insights and avenues for the design and development of more exquisite plasmonic catalysts with regio- and enantioselectivities as well as advanced sensors with unprecedented chemical controllability and specificity.

4.
Nano Lett ; 23(9): 3897-3903, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37083438

RESUMO

Simple, low-cost, and accurate nucleic acid assay platforms hold great promise for point-of-care (POC) pathogen detection, disease surveillance, and control. Plasmonic photothermal polymerase chain reaction (PPT-PCR) is a powerful and efficient nucleic acid amplification technique, but it lacks a simple and convenient analysis method for POC applications. Herein, we propose a novel plasmonic cross-linking colorimetric PCR (PPT-ccPCR) assay by integrating plasmonic magnetic nanoparticle (PMN)-based PPT-PCR with gold nanoparticle (AuNP)-based cross-linking colorimetry. AuNPs form assembled structures with the PMNs in the presence of amplicons and collect in a magnetic field, resulting in color changes to the supernatant. Target DNA with concentrations as low as 5 copies/µL can be visually detected within 40 min. The achieved limit of detection was 1.8 copies/µL based on the absorption signals. This simple and sensitive strategy needs no expensive instrumentation and demonstrates high potential for POC detection while enabling further applications in clinical diagnostics.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Colorimetria/métodos , Ouro/química , Nanopartículas Metálicas/química , DNA/química , Reação em Cadeia da Polimerase , Técnicas de Amplificação de Ácido Nucleico/métodos
5.
Small ; 19(7): e2205956, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36464657

RESUMO

Rational design of plasmonic colloidal assemblies via bottom-up synthesis is challenging but would show unprecedented optical properties that strongly relate to the assembly's shape and spatial arrangement. Herein, the synthesis of plasmonic cyclic Au nanosphere hexamers (PCHs) is reported, wherein six Au nanospheres (Au NSs) are connected via thin metal ligaments. By tuning Au reduction, six dangling Au NSs are interconnected with a core hexagon nanoplate (NPL). Then, Pt atoms are selectively deposited on the edges of the spheres. After etching of the core, necklace-like nanostructures of Pt framework are obtained. Deposition of Au is followed, leading to PCHs in high yield (≈90%). Notably, PCHs exhibit the combinatorial plasmonic characteristics of individual Au NSs and the in-plane coupling of the six linked Au NSs. They yield highly uniform, reproducible, and polarization-independent single-particle surface-enhanced Raman scattering signals, which are attributed to the 2-dimensional isotropic alignment of the Au NSs. Those are applied to a SERS-based immunoassay as quantitative and qualitative single particle SERS nanoprobes. This assay shows a low limit-of-detection, down to 100 pm, which is orders of magnitude lower than those based on Au NSs, and one order of magnitude lower than an assay using analogous particles of smooth Au nanorings.

6.
Nano Lett ; 22(4): 1734-1740, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35138110

RESUMO

The development of a stepwise synthetic strategy for Au ring-in-a-triangle nanoframes with a high degree of structural solidity is essential to the advancement of highly amplified near-field focusing. This strategy leads to the formation of an inscribed nanoring in a triangular metal frame with stability to withstand elevated temperatures and an oxidizing environment, which is critical for successful single-particle surface-enhanced Raman scattering (SERS). The existence of inscribed nanorings plays an important role in enhancing the so-called "lightning rod effect," whereby the electromagnetic near-field enhancement occurs on the highly curved curvature of a metallic interface. We evaluated the corresponding single-particle SERS as a function of the thickness of the rims and then constructed two-dimensional (2D) bulk SERS substrates, wherein an ensemble of hotspots exists. The synergic contribution from both inter- and intrahotspots allowed the outstanding linearity of the calibration curve and the lowest limit of detection, ∼10-18 M for the analyte concentration.


Assuntos
Ouro , Nanopartículas Metálicas , Ouro/química , Nanopartículas Metálicas/química , Análise Espectral Raman/métodos
7.
J Am Chem Soc ; 144(49): 22337-22351, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36473154

RESUMO

Surface-enhanced Raman scattering (SERS) provides significantly enhanced Raman scattering signals from molecules adsorbed on plasmonic nanostructures, as well as the molecules' vibrational fingerprints. Plasmonic nanoparticle systems are particularly powerful for SERS substrates as they provide a wide range of structural features and plasmonic couplings to boost the enhancement, often up to >108-1010. Nevertheless, nanoparticle-based SERS is not widely utilized as a means for reliable quantitative measurement of molecules largely due to limited controllability, uniformity, and scalability of plasmonic nanoparticles, poor molecular modification chemistry, and a lack of widely used analytical protocols for SERS. Furthermore, multiscale issues with plasmonic nanoparticle systems that range from atomic and molecular scales to assembled nanostructure scale are difficult to simultaneously control, analyze, and address. In this perspective, we introduce and discuss the design principles and key issues in preparing SERS nanoparticle substrates and the recent studies on the uniform and controllable synthesis and newly emerging machine learning-based analysis of plasmonic nanoparticle systems for quantitative SERS. Specifically, the multiscale point of view with plasmonic nanoparticle systems toward quantitative SERS is provided throughout this perspective. Furthermore, issues with correctly estimating and comparing SERS enhancement factors are discussed, and newly emerging statistical and artificial intelligence approaches for analyzing complex SERS systems are introduced and scrutinized to address challenges that cannot be fully resolved through synthetic improvements.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Análise Espectral Raman/métodos , Nanopartículas Metálicas/química , Inteligência Artificial
8.
Small ; 18(8): e2105538, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34923738

RESUMO

Single nucleotide polymorphisms (SNPs) that can alter phenotypes of individuals play a pivotal role in disease development and, more importantly, responses to therapy. However, SNP genotyping has been challenging due to the similarity of SNP alleles and their low concentration in biological samples. Sequence-specific nanoparticle with interpretative toehold-mediated sequence decoding in hydrogel (SWITCH) for multiplex SNP genotyping is presented. The encoding with gold nanoparticle probes transduces each SNP target to ≈1000 invaders with prominently different sequences between wild and mutant types, featuring polymerase chain reaction (PCR)-free amplification. Subsequently, the toehold-mediated DNA replacement in hydrogel microparticles decodes the invaders via SNP-specific fluorescence signals. The 4-plex detection of the warfarin-associated SNP targets spiked in commercially validated human serum (S1-100ML, Merck) is successfully demonstrated with excellent specificity. This work is the first technology development presenting PCR-free, multiplex SNP genotyping with a single reporting fluorophore, to the best of knowledge.


Assuntos
Ouro , Nanopartículas Metálicas , Alelos , Genótipo , Hidrogéis , Polimorfismo de Nucleotídeo Único
9.
Nano Lett ; 21(5): 2132-2140, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33596085

RESUMO

There has been enormous interest in understanding and utilizing plasmon-enhanced fluorescence (PEF) with metal nanostructures, but maximizing the enhancement in a reproducible, quantitative manner while reliably controlling the distance between dyes and metal particle surface for practical applications is highly challenging. Here, we designed and synthesized fluorescence-amplified nanocuboids (FANCs) with highly enhanced and controlled PEF signals, and fluorescent silica shell-coated FANCs (FS-FANCs) were then formed to fixate the dye position and increase particle stability and fluorescence signal intensity for biosensing applications. By uniformly modifying fluorescently labeled DNA on Au nanorods and forming ultraflat Ag shells on them, we were able to reliably control the distance between fluorophores and Ag surface and obtained an ∼186 fluorescence enhancement factor with these FANCs. Importantly, FS-FANCs were utilized as fluorescent nanoparticle tags for microarray-based miRNA detection, and we achieved >103-fold higher sensitivity than commercially available chemical fluorophores with 100 aM to 1 pM dynamic range.


Assuntos
MicroRNAs , DNA , Corantes Fluorescentes , Dióxido de Silício , Espectrometria de Fluorescência
10.
Nano Lett ; 21(1): 731-739, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33332127

RESUMO

Photothermal therapy (PTT) exploits nanomaterials with optimal heat conversion and cellular penetration using near-infrared (NIR) laser irradiation. However, current PTT agents suffer from inefficient heat conversion, poor intracellular delivery, and a high dose of probes along with excessive laser irradiation, causing limited therapeutic outcomes. Here, bumpy Au triangular nanoprisms (BATrisms) are developed for increasing the surface area, improving cell penetration, shifting the absorption peak to the NIR region, and enhancing the photothermal conversion efficiency (∼86%). Further, leucine (L)- and lysine (K)-rich cell-penetrating peptides (LK peptides) were employed to largely improve their cellular uptake efficiency. Importantly, a significant in vivo therapeutic efficacy with LK-BATrisms was demonstrated in a triple-negative breast cancer xenograft mice model. A very small dose of LK-BATrism (2.5 µg Au) was enough to exert antitumor efficacy under very low laser power (808 nm, 0.25 W/cm2), causing minimal tissue damages while very efficiently killing cancer cells.


Assuntos
Peptídeos Penetradores de Células , Hipertermia Induzida , Nanoestruturas , Animais , Linhagem Celular Tumoral , Ouro , Lasers , Camundongos , Fototerapia , Terapia Fototérmica
11.
Nano Lett ; 21(18): 7512-7518, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34491741

RESUMO

Plasmonic electrochromism, a change in the localized surface plasmon resonance (LSPR) with an applied electric potential, has been attracting increasing attention for the development of spectroscopic tools or optoelectronic systems. There is a consensus on the mechanism of plasmonic electrochromism based on the classical capacitor and the Drude model. However, the electrochromic behaviors of metallic nanoparticles in narrow optical windows have been demonstrated only with small monotonic LSPR shifts, which limits the use of the electrochromism. Here, we observed three distinct electrochromic behaviors of gold nanocubes with a wide potential range through in situ dark-field electrospectroscopy. Interestingly, the nanocubes show a faster frequency shift under the highly negative potential, and this opens the possibility of largely tunable electrochromic LSPR shifts. The reversibility of the electrochemical switching with these cubes are also shown. We attribute this unexpected change beyond classical understandings to the material-specific quantum mechanical electronic structures of the plasmonic materials.

12.
J Am Chem Soc ; 143(37): 15113-15119, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34369765

RESUMO

We designed complex Au nanorings with intertwined triple rings (ANITs) in a single entity to amplify the efficacy of near-field focusing. Such a complex and unprecedented morphology at the nanoscale was realized through on-demand multistepwise reactions. Triangular nanoprisms were first sculpted into circular nanorings, followed by a series of chemical etching and deposition reactions eventually leading to ANITs wherein thin metal bridges hold the structure together without any linker molecules. In the multistepwise reaction, the well-faceted growth pattern of Au, which induces the growth of two distinctive flat facets in a lateral direction, is important to evolve the morphology from single to multiple nanorings. Although our synthesis proceeds through multiple steps in one batch without purification steps, it shows a remarkably high yield (>∼90%) at the final stage. The obtained high degree of homogeneity (in both shape and size) of the resulting ANITs allowed us to systematically investigate the corresponding localized surface plasmon resonance (LSPR) coupling with varying nanoring arrangements and observe their single-particle surface enhanced Raman scattering (SERS). Surprisingly, individual ANITs exhibited an enormously large enhancement factor (∼109), which confirms their superior near-field focusing relative to other reported nanoparticles.

13.
J Am Chem Soc ; 143(9): 3383-3392, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33439007

RESUMO

Despite remarkable facileness and potential in forming a wide variety of heterostructured nanoparticles with extraordinary compositional and structural complexity, one-pot synthesis of multicomponent heterostructures is largely limited by the lack of fundamental mechanistic understanding, designing principles, and well-established, generally applicable chemical methods. Herein, we developed a one-pot heterointerfacial metamorphosis (1HIM) method that allows heterointerfaces inside a particle to undergo multiple equilibrium stages to form a variety of highly crystalline heterostructured nanoparticles at a relatively low temperature (<100 °C). As proof-of-concept experiments, it was shown that widely different single-crystalline semiconductor-metal anisotropic nanoparticles with synergistic chemical, spectroscopic, and band-gap-engineering properties, including a series of metal-semiconductor nanoframes with high structural and compositional tunability, can be formed by using the 1HIM approach. 1HIM offers a new paradigm to synthesize previously unobtainable or poorly controllable heterostructures with unique or synergistic properties and functions.

14.
Small ; 17(31): e2101262, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34160907

RESUMO

Synthetic strategies of web-above-a-ring (WAR) and web-above-a-lens (WAL) nanostructures are reported. The WAR has a controllable gap between the nanoring core and a nanoweb with nanopores for the effective confinement of electromagnetic field in the nanogap and subsequent surface-enhanced Raman scattering (SERS) of Raman dyes inside the gap with high signal reproducibility, which are attributed to the generation of circular 3D hot zones along the rim of Pt@Au nanorings with wrapping nanoweb architecture. More specifically, Pt@Au nanorings are adopted as a plasmonic core for structural rigidity and built porous nanowebs above them through a controlled combination of galvanic exchange and the Kirkendall effect. Both nanoweb and nanolens structures are also formed on Pt@Au nanoring, which is WAL. structure. Remarkably, plasmonic hot zone, nanopores, and hot lens are formed inside a single WAL nanostructure, and these structural components are orchestrated to generate stronger SERS signals.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Ouro , Reprodutibilidade dos Testes , Análise Espectral Raman
15.
Chem Rev ; 119(24): 12208-12278, 2019 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-31794202

RESUMO

Plasmonic nanostructures possessing unique and versatile optoelectronic properties have been vastly investigated over the past decade. However, the full potential of plasmonic nanostructure has not yet been fully exploited, particularly with single-component homogeneous structures with monotonic properties, and the addition of new components for making multicomponent nanoparticles may lead to new-yet-unexpected or improved properties. Here we define the term "multi-component nanoparticles" as hybrid structures composed of two or more condensed nanoscale domains with distinctive material compositions, shapes, or sizes. We reviewed and discussed the designing principles and synthetic strategies to efficiently combine multiple components to form hybrid nanoparticles with a new or improved plasmonic functionality. In particular, it has been quite challenging to precisely synthesize widely diverse multicomponent plasmonic structures, limiting realization of the full potential of plasmonic heterostructures. To address this challenge, several synthetic approaches have been reported to form a variety of different multicomponent plasmonic nanoparticles, mainly based on heterogeneous nucleation, atomic replacements, adsorption on supports, and biomolecule-mediated assemblies. In addition, the unique and synergistic features of multicomponent plasmonic nanoparticles, such as combination of pristine material properties, finely tuned plasmon resonance and coupling, enhanced light-matter interactions, geometry-induced polarization, and plasmon-induced energy and charge transfer across the heterointerface, were reported. In this review, we comprehensively summarize the latest advances on state-of-art synthetic strategies, unique properties, and promising applications of multicomponent plasmonic nanoparticles. These plasmonic nanoparticles including heterostructured nanoparticles and composite nanostructures are prepared by direct synthesis and physical force- or biomolecule-mediated assembly, which hold tremendous potential for plasmon-mediated energy transfer, magnetic plasmonics, metamolecules, and nanobiotechnology.

16.
Nano Lett ; 20(10): 7774-7782, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32914988

RESUMO

In this Letter, a rational and stepwise method for the solution-phase synthesis of asymmetric Au split nanorings by adopting Au nanoprisms as a template has been demonstrated. The selective chemical etching of Au nanoprism tips activated the surface reactivity of edges and led to the selective deposition of Pt at the periphery of Au nanoplates. By controlling the total amount of Pt on the edges, different degrees of split Au@Pt nanorings were obtained; the subsequent Au coating around the Au@Pt scaffold eventually resulted in asymmetric Au hexagonal split nanorings. Their surface plasmonic features as a function of split degrees were investigated, including straight nanorods, bent nanorods, split nanorings, and full nanorings. The electrical field focusing using single-particle surface-enhanced Raman spectroscopy was evaluated under different polarization angles of the incident light for two different structures with the point gap and line gap between two arms.

17.
Nano Lett ; 20(6): 4362-4369, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32364741

RESUMO

Herein, plasmonic metal tripod nanoframes with three-fold symmetry were synthesized in a high yield (∼83%), and their electric field distribution and single-particle surface-enhanced Raman scattering (SERS) were studied. We realized such complex frame morphology by synthesizing analogous tripod nanoframes through multiple transformations. The precise control of the Au growth pattern led to uniform tripod nanoframes embedded with circle or line-shaped hot spots. The linear-shaped nanogaps ("Y"-shaped hot-zone) of the frame structures can strongly and efficiently confine the electric field, allowing for strong SERS signals. Coupled with a high synthetic yield of the targeted frame structure, strong and uniform SERS signals were obtained inside the nanoframe gaps. Remarkably, quite reproducible SERS signals were obtained with these structures-the SERS enhancement factors with an average value of 7.9 × 107 with a distribution of enhancement factors from 2.2 × 107 to 2.2 × 108 for 45 measured individual particles.

18.
J Am Chem Soc ; 142(36): 15412-15419, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32786770

RESUMO

Herein, we report the novel strategy for the synthesis of complex 3-dimensional (3D) nanostructures, mimicking the linker molecule-free 3D arrangement of six Au nanospheres at the vertices of octahedrons. We utilized 3D PtAu skeleton for the structural rigidity and deposited Au around the PtAu skeleton in a site-selective manner, allowing us to investigate their surface plasmonic coupling phenomenon and near-field enhancement as a function of sizes of nanospheres, which are directly related to the intrananogap distance and interior volume size. The resulting 3D Au hexamer structures with octahedral arrangement were realized through precise control of the Au growth pattern. The complex 3D Au hexamers were composed of six Au nanospheres connected by thin metal conductive bridges. The standard deviation of the metal conductive bridges and Au nanospheres was within ca. 10%, exhibiting a high degree of homogeneity and precise structural tunability. Interestingly, charge transfer among the six Au nanospheres occurred along the metal conductive bridges leading to surface plasmonic coupling between Au nanospheres. Accordingly, electric near fields were strongly and effectively focused at the vertices, intrananogap regions between Au nanospheres, and interior space, exhibiting well-resolved single-particle surface-enhanced Raman spectroscopy signals of absorbed analytes.

19.
J Am Chem Soc ; 142(28): 12341-12348, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32530613

RESUMO

Silver double nanorings with circular intra-nanogaps between two nanorings of different diameters were synthesized without a linker molecule to confine an incident electromagnetic field in a single entity. We used on-demand, rational, and systematic multi-stepwise reactions consisting of (1) selective etching of gold, (2) rim-on deposition of platinum, (3) eccentric growth of gold, and (4) concentric growth of silver. The resulting silver double nanorings exhibited a high degree of homogeneity in both shape and size, with strongly coupled circular hot zones (or "hot halos", referring to the circular intra-nanogaps capable of focusing the near electromagnetic field) resulting from strong surface plasmon coupling between the inner and outer nanorings. Remarkably, these silver double nanorings exhibited strong, stable, and reproducible single-particle surface-enhanced Raman scattering signals without blinking. The signals appeared independently of polarization directions, which is a unique feature of a circular hot halo. The estimated enhancement factor was between 2 × 108 and 7 × 108. The measured limit of detection was 10-7 M in bulk concentration, and the signal appeared 570 s after sample exposure.

20.
Acc Chem Res ; 52(10): 2793-2805, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31553568

RESUMO

Plasmonic nanoparticles are widely exploited in diverse bioapplications ranging from therapeutics to biosensing and biocomputing because of their strong and tunable light-matter interactions, facile and versatile chemical/biological ligand modifications, and biocompatibility. With the rapid growth of nanobiotechnology, understanding dynamic interactions between nanoparticles and biological systems at the molecular or single-particle level is becoming increasingly important for interrogating biological systems with functional nanostructures and for developing nanoparticle-based biosensors and therapeutic agents. Therefore, significant efforts have been devoted to precisely design and create nano-bio interfaces by manipulating the nanoparticles' size, shape, and surface ligand interactions with complex biological systems to maximize their performance and avoid unwanted responses, such as their agglomeration and cytotoxicity. However, investigating physicochemical interactions at the nano-bio interfaces in a quantitative and controllable manner remains challenging, as the interfaces involve highly complex networks between nanoparticles, biomolecules, and cells across multiple scales, each with a myriad of different chemical and biological interactions. A lipid bilayer is a membrane made of two layers of lipid molecules that forms a barrier around cells and plays structural and functional roles in diverse biological processes because they incorporate and present functional molecules (such as membrane proteins) with lateral fluidity. Plasmonic nanoparticles conjugated on lipid membranes provide reliable analytical labels and functional moieties that allow for studying and manipulating interactions between nanoparticles and molecules with single-particle resolution; they also serve as efficient tools for applying optical, mechanical, and thermal stimuli to biological systems, which stem from plasmonic properties. Recently, new opportunities have emerged by interfacing nanoparticle-modified lipid bilayers (NLBs) with complex systems such as molecular circuits and living systems. In this Account, we briefly review how plasmonic properties can be beneficially harnessed on lipid bilayer membranes to investigate the structures and functions of cellular membranes and to develop new platforms for biomedical applications. In particular, we discuss the versatility of supported lipid bilayers (SLBs), which are planar lipid bilayers on hydrophilic substrates, as dynamic biomaterials that provide lateral fluidity and cell membrane-like environments. We then summarize our efforts to create a quantitative analytical platform utilizing nanoparticles as active building blocks and SLBs as integrative substrates. Through this bottom-up approach, various functionalized nanoparticles have been introduced onto lipid bilayers to render nanoparticle-nanoparticle, nanoparticle-lipid bilayer, and biomolecule-lipid bilayer interfaces programmable. Our system provides a new class of tools for studying thermodynamics and kinetics in complex networks of nanostructures and for realizing unique applications in biosensing and biocomputing.


Assuntos
Membrana Celular , Bicamadas Lipídicas , Nanopartículas , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa