Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Mol Cell ; 70(1): 175-187.e8, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29576526

RESUMO

Upon stress, cytoplasmic mRNA is sequestered to insoluble ribonucleoprotein (RNP) granules, such as the stress granule (SG). Partially due to the belief that translationally suppressed mRNAs are recruited to SGs in bulk, stress-induced dynamic redistribution of mRNA has not been thoroughly characterized. Here, we report that endoplasmic reticulum (ER) stress targets only a small subset of translationally suppressed mRNAs into the insoluble RNP granule fraction (RG). This subset, characterized by extended length and adenylate-uridylate (AU)-rich motifs, is highly enriched with genes critical for cell survival and proliferation. This pattern of RG targeting was conserved for two other stress types, heat shock and arsenite toxicity, which induce distinct responses in the total cytoplasmic transcriptome. Nevertheless, stress-specific RG-targeting motifs, such as guanylate-cytidylate (GC)-rich motifs in heat shock, were also identified. Previously underappreciated, transcriptome profiling in the RG may contribute to understanding human diseases associated with RNP dysfunction, such as cancer and neurodegeneration.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Estresse do Retículo Endoplasmático , Resposta ao Choque Térmico , RNA Mensageiro/metabolismo , Ribonucleoproteínas/metabolismo , Transcriptoma , Elementos Ricos em Adenilato e Uridilato , Animais , Arsenitos/toxicidade , Sítios de Ligação , Grânulos Citoplasmáticos/genética , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células HCT116 , Células HEK293 , Humanos , Camundongos , Células NIH 3T3 , Ligação Proteica , Proto-Oncogenes , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/genética , Solubilidade , Tapsigargina/toxicidade , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma/efeitos dos fármacos
2.
Proc Natl Acad Sci U S A ; 120(39): e2220556120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37722048

RESUMO

Mammalian FNDC5 encodes a protein precursor of Irisin, which is important for exercise-dependent regulation of whole-body metabolism. In a genetic screen in Drosophila, we identified Iditarod (Idit), which shows substantial protein homology to mouse and human FNDC5, as a regulator of autophagy acting downstream of Atg1/Atg13. Physiologically, Idit-deficient flies showed reduced exercise performance and defective cold resistance, which were rescued by exogenous expression of Idit. Exercise training increased endurance in wild-type flies, but not in Idit-deficient flies. Conversely, Idit is induced upon exercise training, and transgenic expression of Idit in wild-type flies increased endurance to the level of exercise trained flies. Finally, Idit deficiency prevented both exercise-induced increase in cardiac Atg8 and exercise-induced cardiac stress resistance, suggesting that cardiac autophagy may be an additional mechanism by which Idit is involved in the adaptive response to exercise. Our work suggests an ancient role of an Iditarod/Irisin/FNDC5 family of proteins in autophagy, exercise physiology, and cold adaptation, conserved throughout metazoan species.


Assuntos
Proteínas de Drosophila , Fibronectinas , Animais , Humanos , Camundongos , Animais Geneticamente Modificados , Autofagia , Drosophila , Fibronectinas/metabolismo , Mamíferos , Fatores de Transcrição , Proteínas de Drosophila/metabolismo
3.
Nature ; 571(7765): 424-428, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31292544

RESUMO

N6-methyladenosine (m6A) is the most prevalent modified nucleotide in mRNA1,2, with around 25% of mRNAs containing at least one m6A. Methylation of mRNA to form m6A is required for diverse cellular and physiological processes3. Although the presence of m6A in an mRNA can affect its fate in different ways, it is unclear how m6A directs this process and why the effects of m6A can vary in different cellular contexts. Here we show that the cytosolic m6A-binding proteins-YTHDF1, YTHDF2 and YTHDF3-undergo liquid-liquid phase separation in vitro and in cells. This phase separation is markedly enhanced by mRNAs that contain multiple, but not single, m6A residues. Polymethylated mRNAs act as a multivalent scaffold for the binding of YTHDF proteins, juxtaposing their low-complexity domains and thereby leading to phase separation. The resulting mRNA-YTHDF complexes then partition into different endogenous phase-separated compartments, such as P-bodies, stress granules or neuronal RNA granules. m6A-mRNA is subject to compartment-specific regulation, including a reduction in the stability and translation of mRNA. These studies reveal that the number and distribution of m6A sites in cellular mRNAs can regulate and influence the composition of the phase-separated transcriptome, and suggest that the cellular properties of m6A-modified mRNAs are governed by liquid-liquid phase separation principles.


Assuntos
Adenosina/análogos & derivados , Compartimento Celular , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Adenosina/metabolismo , Animais , Transporte Biológico , Linhagem Celular , Grânulos Citoplasmáticos/química , Grânulos Citoplasmáticos/metabolismo , Humanos , Metilação , Metiltransferases/deficiência , Camundongos , Transição de Fase , RNA Mensageiro/análise , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Estresse Fisiológico
4.
Biochem Biophys Res Commun ; 697: 149497, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38262290

RESUMO

Stress granule (SG) is a temporary cellular structure that plays a crucial role in the regulation of mRNA and protein sequestration during various cellular stress conditions. SG enables cells to cope with stress more effectively, conserving vital energy and resources. Focusing on the NTF2-like domain of G3BP1, a key protein in SG dynamics, we explore to identify and characterize novel small molecules involved in SG modulation without external stressors. Through in silico molecular docking approach to simulate the interaction between various compounds and the NTF2-like domain of G3BP1, we identified three compounds as potential candidates that could bind to the NTF2-like domain of G3BP1. Subsequent immunofluorescence experiments demonstrated that these compounds induce the formation of SG-like, G3BP1-positive granules. Importantly, the granule formation by these compounds occurs independent from the phosphorylation of eIF2α, a common mechanism in SG formation, suggesting that it might offer a new strategy for influencing SG dynamics implicated in various diseases.


Assuntos
DNA Helicases , RNA Helicases , DNA Helicases/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Simulação de Acoplamento Molecular , Grânulos Citoplasmáticos/metabolismo
5.
PLoS Biol ; 17(4): e3000219, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30973873

RESUMO

Macroautophagy (hereafter autophagy) is a well-conserved cellular process through which cytoplasmic components are delivered to the vacuole/lysosome for degradation and recycling. Studies have revealed the molecular mechanism of transcriptional regulation of autophagy-related (ATG) genes upon nutrient deprivation. However, little is known about their translational regulation. Here, we found that Dhh1, a DExD/H-box RNA helicase, is required for efficient translation of Atg1 and Atg13, two proteins essential for autophagy induction. Dhh1 directly associates with ATG1 and ATG13 mRNAs under nitrogen-starvation conditions. The structured regions shortly after the start codons of the two ATG mRNAs are necessary for their translational regulation by Dhh1. Both the RNA-binding ability and helicase activity of Dhh1 are indispensable to promote Atg1 translation and autophagy. Moreover, eukaryotic translation initiation factor 4E (EIF4E)-associated protein 1 (Eap1), a target of rapamycin (TOR)-regulated EIF4E binding protein, physically interacts with Dhh1 after nitrogen starvation and facilitates the translation of Atg1 and Atg13. These results suggest a model for how some ATG genes bypass the general translational suppression that occurs during nitrogen starvation to maintain a proper level of autophagy.


Assuntos
RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Nitrogênio/deficiência , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagia/fisiologia , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Células HEK293 , Humanos , Nitrogênio/metabolismo , Fosforilação , Ligação Proteica , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo
6.
J Biol Chem ; 295(7): 1769-1780, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31915252

RESUMO

Sestrins represent a family of stress-inducible proteins that prevent the progression of many age- and obesity-associated disorders. Endogenous Sestrins maintain insulin-dependent AKT Ser/Thr kinase (AKT) activation during high-fat diet-induced obesity, and overexpressed Sestrins activate AKT in various cell types, including liver and skeletal muscle cells. Although Sestrin-mediated AKT activation improves metabolic parameters, the mechanistic details underlying such improvement remain elusive. Here, we investigated how Sestrin2, the Sestrin homolog highly expressed in liver, induces strong AKT activation. We found that two known targets of Sestrin2, mTOR complex (mTORC) 1 and AMP-activated protein kinase, are not required for Sestrin2-induced AKT activation. Rather, phosphoinositol 3-kinase and mTORC2, kinases upstream of AKT, were essential for Sestrin2-induced AKT activation. Among these kinases, mTORC2 catalytic activity was strongly up-regulated upon Sestrin2 overexpression in an in vitro kinase assay, indicating that mTORC2 may represent the major link between Sestrin2 and AKT. As reported previously, Sestrin2 interacted with mTORC2; however, we found here that this interaction occurs indirectly through GATOR2, a pentameric protein complex that directly interacts with Sestrin2. Deleting or silencing WDR24 (WD repeat domain 24), the GATOR2 component essential for the Sestrin2-GATOR2 interaction, or WDR59, the GATOR2 component essential for the GATOR2-mTORC2 interaction, completely ablated Sestrin2-induced AKT activation. We also noted that Sestrin2 also directly binds to the pleckstrin homology domain of AKT and induces AKT translocation to the plasma membrane. These results uncover a signaling mechanism whereby Sestrin2 activates AKT through GATOR2 and mTORC2.


Assuntos
Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Obesidade/genética , Peroxidases/genética , Proteínas/genética , Proteínas Proto-Oncogênicas c-akt/genética , Animais , Dieta Hiperlipídica/efeitos adversos , Regulação da Expressão Gênica/genética , Células Hep G2 , Humanos , Insulina/genética , Resistência à Insulina/genética , Camundongos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Obesidade/metabolismo , Obesidade/patologia , Fosfatidilinositol 3-Quinases/genética , Fosforilação/genética , Ligação Proteica/genética , Proteínas/metabolismo , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética
7.
Trends Biochem Sci ; 41(7): 621-632, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27174209

RESUMO

Excessive accumulation of reactive oxygen species (ROS) and chronic activation of mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) are well-characterized promoters of aging and age-associated degenerative pathologies. Sestrins, a family of highly conserved stress-inducible proteins, are important negative regulators of both ROS and mTORC1 signaling pathways; however, the mechanistic basis of how Sestrins suppress these pathways remains elusive. In the past couple of years, breakthrough discoveries about Sestrin signaling and its molecular nature have markedly increased our biochemical understanding of Sestrin function. These discoveries have also uncovered new potential therapeutic strategies that may eventually enable us to attenuate aging and age-associated diseases.


Assuntos
Proteínas de Choque Térmico/metabolismo , Proteínas Nucleares/metabolismo , Fenômenos Bioquímicos , Proteínas de Choque Térmico/química , Humanos , Proteínas Nucleares/química
8.
FASEB J ; 33(12): 13216-13227, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31533005

RESUMO

The well-known tumor suppressor p53 inhibits the formation of various cancers by inducing cell cycle arrest and apoptosis. Although p53 mutations are commonly found in many cancers, p53 is functionally inactivated in tumor cells that retain wild-type p53. Here, we show that the ligand of numb protein X1 (LNX1) inhibited p53-dependent transcription by decreasing the half-life of p53. We generated LNX1 knockout (KO) cells in p53 wild-type cancer cells (A549, HCT116, and MCF7) using the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 gene-editing system. LNX1 KO activated p53-dependent transcription by increasing the stability of p53. Moreover, lentivirus-mediated overexpression of LNX1 decreased p53 protein levels and inhibited p53-dependent transcription. LNX1 interacted with p53 and mouse double minute 2 (MDM2) and increased the ubiquitination of p53 in an MDM2-dependent manner. Finally, we demonstrated that LNX1 was required for efficient tumor growth both in cell culture and in a mouse tumor xenograft model. These results collectively indicated that LNX1 contributed to tumor growth by inhibiting p53-dependent signaling in p53 wild-type cancer cells.-Park, R., Kim, H., Jang, M., Jo, D., Park, Y.-I., Namkoong, S., Lee, J. I., Jang, I.-S., Park, J. LNX1 contributes to tumor growth by down-regulating p53 stability.


Assuntos
Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Células A549 , Animais , Proliferação de Células/genética , Proliferação de Células/fisiologia , Células HCT116 , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína Supressora de Tumor p53/genética , Ubiquitina-Proteína Ligases/genética , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Biochem Biophys Res Commun ; 462(4): 402-8, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-25976674

RESUMO

Reserpine is a well-known medicine for the treatment of hypertension and schizophrenia, but its administration can induce Parkinson's disease (PD)-like symptoms in humans and animals. Reserpine inhibits the vesicular transporter of monoamines and depletes the brain of monoamines such as dopamine. However, the cellular function of reserpine is not fully understood. In this report, we present one possible mechanism by which reserpine may contribute to PD-like symptoms. Reserpine treatment induced the formation of enlarged autophagosomes by inhibiting the autophagic flux and led to accumulation of p62, an autophagy adapter molecule. In particular, reserpine treatment increased the level of α-synuclein protein and led to accumulation of α-synuclein in autophagosomes. Treatment with rapamycin enhanced the effect of reserpine by further increasing the level of α-synuclein and neuronal cell death. Drosophila raised on media containing reserpine showed loss of dopaminergic neurons. Furthermore, cotreatment with reserpine and rapamycin aggravated the loss of dopaminergic neurons. Our results suggest that reserpine contributes to the loss of dopaminergic neurons by interfering with autophagic flux.


Assuntos
Anti-Hipertensivos/farmacologia , Autofagia/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Reserpina/farmacologia , Linhagem Celular , Humanos , Neurônios/citologia
10.
Heliyon ; 10(3): e24699, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38318058

RESUMO

Groundwater Charge was introduced in 2005 as one of the sustainable resource management measures in South Korea. The implementation rate, however, stagnated around 37 %, indicating that most local governments chose not to adopt this 'optional' regulation. While previous Stakeholder Analysis studies mainly blamed exclusion - or limited involvement - of stakeholders in the designing and structuring stage of policy-making process for policy failures, this study focused on the interest conflicts and dynamics hindered implementation process. This is because the issue with the subject policy, i.e., Groundwater Charge in South Korea, is low 'implementation rate' not the 'collection rate' or 'tax deficit.' If it was simply design or structural issue, the Charge should suffer from tax deficit problem due to lower tax income than operational costs. Thus, in order to investigate the reasons of low Charge adoption rate at the local government level, the Stakeholder Analysis Theory was applied to examine each stakeholder of the Charge to distinguish the interaction among supportive and opposing groups. The analysis revealed that there are only strong opponents of the policy without clearly identifiable supporters. Having agricultural & fishery industry and small independent businesses in spas, hotels, and swimming pool as strong Players, the Context setters (local governments) are not motivated to enforce Groundwater charge. Furthermore, today's social norm governed by economic efficiency is preventing the environmentalists and other Subjects to counteract Players. Under these circumstances, this study recommends the Subject to transform the Crowds (general public) into policy supporters through education. Environmental education is the only viable means to encourage necessary paradigm shift to enable effective implementation of environmental policies like Groundwater charge.

11.
Arch Pharm (Weinheim) ; 346(12): 851-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24214666

RESUMO

A series of novel di-α-aminophosphonate derivatives were synthesized by a one-pot method in the presence of PEG-H2 O under ultrasonic irradiation and were characterized by IR, (1) H NMR, (13) C NMR, mass spectrometry, and elemental analysis. The newly synthesized compounds were evaluated for their cytotoxic activities against the human lung cancer cell line H1299 and the human breast cancer cell line MCF7 in vitro by the MTT method. All compounds showed moderate cytotoxic activity on both cell lines, and compounds 4b and 4c showed marked activity.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Química Verde , Organofosfonatos/síntese química , Organofosfonatos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Células MCF-7 , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Estrutura Molecular , Polietilenoglicóis/química , Espectrofotometria Infravermelho , Relação Estrutura-Atividade , Fatores de Tempo , Ultrassom/métodos , Água/química
12.
Biomolecules ; 13(7)2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37509063

RESUMO

Transposable elements (TEs) are DNA sequences that can transpose and replicate within the genome, leading to genetic changes that affect various aspects of host biology. Evolutionarily, hosts have also developed molecular mechanisms to suppress TEs at the transcriptional and post-transcriptional levels. Recent studies suggest that stress-induced formation of ribonucleoprotein (RNP) granules, including stress granule (SG) and processing body (P-body), can play a role in the sequestration of TEs to prevent transposition, suggesting an additional layer of the regulatory mechanism for TEs. RNP granules have been shown to contain factors involved in RNA regulation, including mRNA decay enzymes, RNA-binding proteins, and noncoding RNAs, which could potentially contribute to the regulation of TEs. Therefore, understanding the interplay between TEs and RNP granules is crucial for elucidating the mechanisms for maintaining genomic stability and controlling gene expression. In this review, we provide a brief overview of the current knowledge regarding the interplay between TEs and RNP granules, proposing RNP granules as a novel layer of the regulatory mechanism for TEs during stress.


Assuntos
Elementos de DNA Transponíveis , Proteínas de Ligação a RNA , Elementos de DNA Transponíveis/genética , Proteínas de Ligação a RNA/metabolismo , Grânulos de Ribonucleoproteínas Citoplasmáticas
13.
Nat Struct Mol Biol ; 30(10): 1525-1535, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37710015

RESUMO

Stress granules are biomolecular condensates composed of protein and mRNA. One feature of stress granule-enriched mRNAs is that they are often longer than average. Another feature of stress granule-enriched mRNAs is that they often contain multiple N6-methyladenosine (m6A) residues. m6A is bound by the YTHDF proteins, creating mRNA-protein complexes that partition into stress granules in mammalian cells. Here we show that length-dependent enrichment of mRNAs in stress granules is mediated by m6A. Long mRNAs often contain one or more long exons, which are preferential sites of m6A formation. In mammalian cells lacking m6A, long mRNAs no longer show preferential stress granule enrichment. Furthermore, we show that m6A abundance more strongly predicts which short or long mRNAs are enriched in stress granules, rather than length alone. Thus, mRNA length correlates with mRNA enrichment in stress granules owing to the high prevalence of m6A in long mRNAs.


Assuntos
Mamíferos , Grânulos de Estresse , Animais , RNA Mensageiro/metabolismo , Mamíferos/genética
14.
BMB Rep ; 55(12): 577-586, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36330685

RESUMO

Stress granules (SGs) are stress-induced subcellular compartments, which carry out a particular function to cope with stress. These granules protect cells from stress-related damage and cell death through dynamic sequestration of numerous ribonucleoproteins (RNPs) and signaling proteins, thereby promoting cell survival under both physiological and pathological condition. During tumorigenesis, cancer cells are repeatedly exposed to diverse stress stimuli from the tumor microenvironment, and the dynamics of SGs is often modulated due to the alteration of gene expression patterns in cancer cells, leading to tumor progression as well as resistance to anticancer treatment. In this mini review, we provide a brief discussion about our current understanding of the fundamental roles of SGs during physiological stress and the effect of dysregulated SGs on cancer cell fitness and cancer therapy. [BMB Reports 2022; 55(12): 577-586].


Assuntos
Neoplasias , Grânulos de Estresse , Humanos , Grânulos Citoplasmáticos/metabolismo , Neoplasias/metabolismo , Ribonucleoproteínas/metabolismo , Estresse Fisiológico/fisiologia , Microambiente Tumoral
15.
Biol Pharm Bull ; 34(2): 203-8, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21415528

RESUMO

The extracellular signal-regulated kinases/mitogen activated protein kinase (ERK/MAPK) and nuclear factor-κB (NF-κB) pathways are critical for cell survival and proliferation. Alpinumisoflavone (AIF), isolated from the African medicinal plant Erythrina lysistemon, is a member of the isoflavone group. In this report, we demonstrated that AIF treatment induces cell death of human lung tumor cells. Incubation of lung tumor cells with AIF increased the sub-G1 population and caspase 3/7 activity, suggesting that the cell death is caused by apoptosis. To identify the signaling pathway involved in the tumor cell death, we examined the modulation of transcriptional activity using various reporter constructs and found that AIF significantly deregulated both the ERK/MAPK and NF-κB pathways. Western blot analysis with antibodies to MAP/ERK kinase (MEK) and ERK showed that AIF dephosphorylates both MEK and ERK. Alpinumisoflavone also repressed lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW264.7 cells by inhibiting NF-κB-dependent transcription. Therefore, the cell death induced by AIF may be via repressing both the ERK/MAPK and NF-κB pathways.


Assuntos
Apoptose/efeitos dos fármacos , Erythrina/química , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Isoflavonas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , NF-kappa B/antagonistas & inibidores , Extratos Vegetais/farmacologia , Animais , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Caspases/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Expressão Gênica/efeitos dos fármacos , Humanos , Isoflavonas/isolamento & purificação , Isoflavonas/uso terapêutico , Lipopolissacarídeos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Óxido Nítrico/biossíntese , Fosforilação , Fitoterapia , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Transdução de Sinais/efeitos dos fármacos
16.
Cancers (Basel) ; 13(14)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34298831

RESUMO

Mounting evidence supports the relationship between obesity and cancer. However, the molecular mechanisms linking obesity with cancer remain largely uninvestigated. In this study, we demonstrate that the expression of C1q/TNF-related protein 1 (CTRP1), an adiponectin paralogue, contributes to tumor growth by regulating the tumor suppressor p53. In our study, obese mice on a high-fat diet showed higher serum CTRP1 levels. Through in vitro experiments, we showed that the secreted form of CTRP1 in the culture medium decreased p53 expression and p53-dependent transcription in the cells. Moreover, CTRP1 treatment enhanced colony formation and cell migration. These results collectively suggest that elevated levels of CTRP1 in obesity significantly contribute to tumor progression.

17.
Cancers (Basel) ; 13(16)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34439220

RESUMO

The ligand of numb-protein X1 (LNX1) acts as a proto-oncogene by inhibiting p53 stability; however, the regulation of LNX1 expression has not been investigated. In this study, we screened chemicals to identify factors that potentially regulate LNX1 expression. We found that LNX1 expression levels were decreased by DNA damage, including that by cisplatin. Upon treatment with lipopolysaccharide (LPS) and phorbol 12-myristate 13-acetate (PMA), LNX1 expression levels increased. In addition, cell-cycle progression increased upon LNX1 expression; the levels of S and G2/M populations were correlated with LNX1 expression. Moreover, in CRISPR-Cas9-mediated LNX1 knockout cells, we observed a delay in cell-cycle progression and a downregulation of genes encoding the cell-cycle markers cyclin D1 and cyclin E1. Finally, the upregulation of LNX1-activated cell-cycle progression and increased resistance to cisplatin-mediated cell death. Taken together, these results suggest that LNX1 contributes to cell-cycle progression and cisplatin resistance.

18.
Artigo em Inglês | MEDLINE | ID: mdl-32963564

RESUMO

COVID-19, a global pandemic, has caused over 750,000 deaths worldwide as of August 2020. A vaccine or remedy for SARS-CoV-2, the virus responsible for COVID-19, is necessary to slow down the spread and lethality of COVID-19. However, there is currently no effective treatment available against SARS-CoV-2. In this report, we demonstrated that EGCG and theaflavin, the main active ingredients of green tea and black tea, respectively, are potentially effective to inhibit SARS-CoV-2 activity. Coronaviruses require the 3CL-protease for the cleavage of its polyprotein to make individual proteins functional. EGCG and theaflavin showed inhibitory activity against the SARS-CoV-2 3CL-protease in a dose-dependent manner, and the half inhibitory concentration (IC50) was 7.58 µg/ml for EGCG and 8.44 µg/ml for theaflavin. In addition, we did not observe any cytotoxicity for either EGCG or theaflavin at the concentrations tested up to 40 µg/ml in HEK293T cells. These results suggest that upon further study, EGCG and theaflavin can be potentially useful to treat COVID-19.

19.
J Microbiol Biotechnol ; 30(7): 1044-1050, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32160700

RESUMO

Abelmoschus manihot (Linn.) is a medicinal herbal plant that is commonly used to treat chronic kidney disease and hepatitis. However, its effect on cell proliferation has not been clearly revealed. In this report, we sought to determine the effect of the flower extract of A. manihot (FA) on cell proliferation. Based on our findings, FA increased the proliferation of human diploid fibroblast (HDF) and HEK293 cells. Through cell cycle analysis, FA was found to increase the number of HDF cells in the S phase and G2/M phase. FA also increased the expression of cyclin D1 and enhanced the migration of HDF cells. By administering FA to HDF cells with ≥30 passages, a decrease in the number of senescence-associated ß galactosidase-positive cells was observed, thereby indicating that FA can ameliorate cellular senescence. Collectively, our findings indicate that FA increases cyclin D1 expression and regulates cell proliferation.


Assuntos
Abelmoschus/química , Proliferação de Células/efeitos dos fármacos , Ciclina D1/metabolismo , Flores/química , Extratos Vegetais/farmacologia , Movimento Celular/efeitos dos fármacos , Senescência Celular , Fase G2/efeitos dos fármacos , Células HEK293 , Humanos , Fase S/efeitos dos fármacos
20.
Cell Rep ; 32(8): 108077, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32846134

RESUMO

DNA damage often induces heterogeneous cell-fate responses, such as cell-cycle arrest and apoptosis. Through single-cell RNA sequencing (scRNA-seq), we characterize the transcriptome response of cultured colon cancer cell lines to 5-fluorouracil (5FU)-induced DNA damage. After 5FU treatment, a single population of colon cancer cells adopts three distinct transcriptome phenotypes, which correspond to diversified cell-fate responses: apoptosis, cell-cycle checkpoint, and stress resistance. Although some genes are regulated uniformly across all groups of cells, many genes showed group-specific expression patterns mediating DNA damage responses specific to the corresponding cell fate. Some of these observations are reproduced at the protein level by flow cytometry and are replicated in cells treated with other 5FU-unrelated genotoxic drugs, camptothecin and etoposide. This work provides a resource for understanding heterogeneous DNA damage responses involving fractional killing and chemoresistance, which are among the major challenges in current cancer chemotherapy.


Assuntos
Neoplasias do Colo/genética , Dano ao DNA/genética , Fluoruracila/metabolismo , Análise de Célula Única/métodos , Transcriptoma/genética , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa