Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Am Ceram Soc ; 105(3): 1671-1684, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35875405

RESUMO

We propose a novel image analysis framework to automate analysis of X-ray microtomography images of sintering ceramics and glasses, using open-source toolkits and machine learning. Additive manufacturing (AM) of glasses and ceramics usually requires sintering of green bodies. Sintering causes shrinkage, which presents a challenge for controlling the metrology of the final architecture. Therefore, being able to monitor sintering in 3D over time (termed 4D) is important when developing new porous ceramics or glasses. Synchrotron X-ray tomographic imaging allows in situ, real-time capture of the sintering process at both micro and macro scales using a furnace rig, facilitating 4D quantitative analysis of the process. The proposed image analysis framework is capable of tracking and quantifying the densification of glass or ceramic particles within multiple volumes of interest (VOIs) along with structural changes over time using 4D image data. The framework is demonstrated by 4D quantitative analysis of bioactive glass ICIE16 within a 3D-printed scaffold. Here, densification of glass particles within 3 VOIs were tracked and quantified along with diameter change of struts and interstrut pore size over the 3D image series, delivering new insights on the sintering mechanism of ICIE16 bioactive glass particles in both micro and macro scales.

2.
J Am Heart Assoc ; 12(1): e026901, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36583428

RESUMO

Background Cerebral small vessel disease is associated with higher ratios of soluble-epoxide hydrolase derived linoleic acid diols (12,13-dihydroxyoctadecenoic acid [DiHOME] and 9,10-DiHOME) to their parent epoxides (12(13)-epoxyoctadecenoic acid [EpOME] and 9(10)-EpOME); however, the relationship has not yet been examined in stroke. Methods and Results Participants with mild to moderate small vessel stroke or large vessel stroke were selected based on clinical and imaging criteria. Metabolites were quantified by ultra-high-performance liquid chromatography-mass spectrometry. Volumes of stroke, lacunes, white matter hyperintensities, magnetic resonance imaging visible perivascular spaces, and free water diffusion were quantified from structural and diffusion magnetic resonance imaging (3 Tesla). Adjusted linear regression models were used for analysis. Compared with participants with large vessel stroke (n=30), participants with small vessel stroke (n=50) had a higher 12,13-DiHOME/12(13)-EpOME ratio (ß=0.251, P=0.023). The 12,13-DiHOME/12(13)-EpOME ratio was associated with more lacunes (ß=0.266, P=0.028) but not with large vessel stroke volumes. Ratios of 12,13-DiHOME/12(13)-EpOME and 9,10-DiHOME/9(10)-EpOME were associated with greater volumes of white matter hyperintensities (ß=0.364, P<0.001; ß=0.362, P<0.001) and white matter MRI-visible perivascular spaces (ß=0.302, P=0.011; ß=0.314, P=0.006). In small vessel stroke, the 12,13-DiHOME/12(13)-EpOME ratio was associated with higher white matter free water diffusion (ß=0.439, P=0.016), which was specific to the temporal lobe in exploratory regional analyses. The 9,10-DiHOME/9(10)-EpOME ratio was associated with temporal lobe atrophy (ß=-0.277, P=0.031). Conclusions Linoleic acid markers of cytochrome P450/soluble-epoxide hydrolase activity were associated with small versus large vessel stroke, with small vessel disease markers consistent with blood brain barrier and neurovascular-glial disruption, and temporal lobe atrophy. The findings may indicate a novel modifiable risk factor for small vessel disease and related neurodegeneration.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Acidente Vascular Cerebral , Humanos , Ácido Linoleico , Oxilipinas , Epóxido Hidrolases , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/patologia , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Imageamento por Ressonância Magnética , Atrofia , Água
3.
Magn Reson Imaging ; 92: 150-160, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35753643

RESUMO

PURPOSE: Magnetic resonance imaging (MRI) scanner-specific geometric distortions may contribute to scanner induced variability and decrease volumetric measurement precision for multi-site studies. The purpose of this study was to determine whether geometric distortion correction increases the precision of brain volumetric measurements in a multi-site multi-scanner study. METHODS: Geometric distortion variation was quantified over a one-year period at 10 sites using the distortion fields estimated from monthly 3D T1-weighted MRI geometrical phantom scans. The variability of volume and distance measurements were quantified using synthetic volumes and a standard quantitative MRI (qMRI) phantom. The effects of geometric distortion corrections on MRI derived volumetric measurements of the human brain were assessed in two subjects scanned on each of the 10 MRI scanners and in 150 subjects with cerebrovascaular disease (CVD) acquired across imaging sites. RESULTS: Geometric distortions were found to vary substantially between different MRI scanners but were relatively stable on each scanner over a one-year interval. Geometric distortions varied spatially, increasing in severity with distance from the magnet isocenter. In measurements made with the qMRI phantom, the geometric distortion correction decreased the standard deviation of volumetric assessments by 35% and distance measurements by 42%. The average coefficient of variance decreased by 16% in gray matter and white matter volume estimates in the two subjects scanned on the 10 MRI scanners. CONCLUSION: Geometric distortion correction using an up-to-date correction field is recommended to increase precision in volumetric measurements made from MRI images.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas
4.
Int J Biomed Imaging ; 2022: 5860364, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313789

RESUMO

Alterations in tissue microstructure in normal-appearing white matter (NAWM), specifically measured by diffusion tensor imaging (DTI) fractional anisotropy (FA), have been associated with cognitive outcomes following stroke. The purpose of this study was to comprehensively compare conventional DTI measures of tissue microstructure in NAWM to diverse vascular brain lesions in people with cerebrovascular disease (CVD) and to examine associations between FA in NAWM and cerebrovascular risk factors. DTI metrics including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were measured in cerebral tissues and cerebrovascular anomalies from 152 people with CVD participating in the Ontario Neurodegenerative Disease Research Initiative (ONDRI). Ten cerebral tissue types were segmented including NAWM, and vascular lesions including stroke, periventricular and deep white matter hyperintensities, periventricular and deep lacunar infarcts, and perivascular spaces (PVS) using T1-weighted, proton density-weighted, T2-weighted, and fluid attenuated inversion recovery MRI scans. Mean DTI metrics were measured in each tissue region using a previously developed DTI processing pipeline and compared between tissues using multivariate analysis of covariance. Associations between FA in NAWM and several CVD risk factors were also examined. DTI metrics in vascular lesions differed significantly from healthy tissue. Specifically, all tissue types had significantly different MD values, while FA was also found to be different in most tissue types. FA in NAWM was inversely related to hypertension and modified Rankin scale (mRS). This study demonstrated the differences between conventional DTI metrics, FA, MD, AD, and RD, in cerebral vascular lesions and healthy tissue types. Therefore, incorporating DTI to characterize the integrity of the tissue microstructure could help to define the extent and severity of various brain vascular anomalies. The association between FA within NAWM and clinical evaluation of hypertension and disability provides further evidence that white matter microstructural integrity is impacted by cerebrovascular function.

5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 1816-1819, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018352

RESUMO

The measure of White Blood Cells (WBC) in the blood is an important indicator of pathological conditions. Computer vision based methods for differential counting of WBC are increasing due to their advantages over traditional methods. However, most of these methods are proposed for single WBC images which are pre-processed, and do not generalize for raw microscopic images with multiple WBC. Moreover, they do not have the capability to detect the absence of WBC in the images. This paper proposes an image processing algorithm based on K-Means clustering to detect the presence of WBC in raw microscopic images and to localize them, and a VGG-16 classifier to classify those cells with a classification accuracy of 95.89%.


Assuntos
Processamento de Imagem Assistida por Computador , Leucócitos , Algoritmos , Análise por Conglomerados , Contagem de Leucócitos
6.
Med Phys ; 36(2): 373-85, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19291976

RESUMO

Atherosclerosis at the carotid bifurcation can result in cerebral emboli, which in turn can block the blood supply to the brain causing ischemic strokes. Noninvasive imaging tools that better characterize arterial wall, and atherosclerotic plaque structure and composition may help to determine the factors which lead to the development of unstable lesions, and identify patients at risk of plaque disruption and stroke. Carotid magnetic resonance (MR) imaging allows for the characterization of carotid vessel wall and plaque composition, the characterization of normal and pathological arterial wall, the quantification of plaque size, and the detection of plaque integrity. On the other hand, various ultrasound (US) measurements have also been used to quantify atherosclerosis, carotid stenosis, intima-media thickness, total plaque volume, total plaque area, and vessel wall volume. Combining the complementary information provided by 3D MR and US carotid images may lead to a better understanding of the underlying compositional and textural factors that define plaque and wall vulnerability, which may lead to better and more effective stroke prevention strategies and patient management. Combining these images requires nonrigid registration to correct the nonlinear misalignments caused by relative twisting and bending in the neck due to different head positions during the two image acquisition sessions. The high degree of freedom and large number of parameters associated with existing nonrigid image registration methods causes several problems including unnatural plaque morphology alteration, high computational complexity, and low reliability. Thus, a "twisting and bending" model was used with only six parameters to model the normal movement of the neck for nonrigid registration. The registration technique was evaluated using 3D US and MR carotid images at two field strengths, 1.5 and 3.0 T, of the same subject acquired on the same day. The mean registration error between the segmented carotid artery wall boundaries in the target US image and the registered MR images was calculated using a distance-based error metric after applying a "twisting and bending" model based nonrigid registration algorithm. An average registration error of 1.4 +/- 0.3 mm was obtained for 1.5 T MR and 1.5 +/- 0.4 mm for 3.0 T MR, when registered with 3D US images using the nonrigid registration technique presented in this paper. Visual inspection of segmented vessel surfaces also showed a substantial improvement of alignment with this nonrigid registration technique compared to rigid registration.


Assuntos
Artérias Carótidas/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Humanos , Sensibilidade e Especificidade , Ultrassonografia
7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 7197-7200, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31947495

RESUMO

Diabetes mellitus is a major health problem which needs regular glucose monitoring for management of the disease. Invasive blood glucose measuring systems with acceptable accuracy are currently used for measurements. Several non- invasive blood glucose measurement techniques are reported in research literature, but most of them are not commercially available due to low accuracy or dependency on individual physiological parameters. This paper presents a hybrid technique to measure blood glucose level non-invasively using a combination of multi-wavelength Near Infrared (NIR) spectroscopy and bio-impedance spectroscopy. Physiological parameters of individuals and other environmental factors that affect non-invasive glucose measurements have been identified and compensated to make the device work on any person without calibrations. The measured parameters, along with the glucose level of the subject obtained from a commercial blood glucose meter is used to train a Random Forest regression algorithm. A training set of 315 data samples were used for the development of the system. The accuracy of predictions was tested using a testing set of 80 data samples. The trained system can predict the blood glucose levels non-invasively with 90.7% accuracy.


Assuntos
Automonitorização da Glicemia/métodos , Glicemia/análise , Diabetes Mellitus , Algoritmos , Calibragem , Espectroscopia Dielétrica , Humanos , Espectroscopia de Luz Próxima ao Infravermelho
8.
PLoS One ; 14(12): e0226715, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31860686

RESUMO

The processing of brain diffusion tensor imaging (DTI) data for large cohort studies requires fully automatic pipelines to perform quality control (QC) and artifact/outlier removal procedures on the raw DTI data prior to calculation of diffusion parameters. In this study, three automatic DTI processing pipelines, each complying with the general ENIGMA framework, were designed by uniquely combining multiple image processing software tools. Different QC procedures based on the RESTORE algorithm, the DTIPrep protocol, and a combination of both methods were compared using simulated ground truth and artifact containing DTI datasets modeling eddy current induced distortions, various levels of motion artifacts, and thermal noise. Variability was also examined in 20 DTI datasets acquired in subjects with vascular cognitive impairment (VCI) from the multi-site Ontario Neurodegenerative Disease Research Initiative (ONDRI). The mean fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were calculated in global brain grey matter (GM) and white matter (WM) regions. For the simulated DTI datasets, the measure used to evaluate the performance of the pipelines was the normalized difference between the mean DTI metrics measured in GM and WM regions and the corresponding ground truth DTI value. The performance of the proposed pipelines was very similar, particularly in FA measurements. However, the pipeline based on the RESTORE algorithm was the most accurate when analyzing the artifact containing DTI datasets. The pipeline that combined the DTIPrep protocol and the RESTORE algorithm produced the lowest standard deviation in FA measurements in normal appearing WM across subjects. We concluded that this pipeline was the most robust and is preferred for automated analysis of multisite brain DTI data.


Assuntos
Disfunção Cognitiva/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Imagem de Tensor de Difusão/normas , Processamento Eletrônico de Dados/métodos , Controle de Qualidade , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Anisotropia , Artefatos , Estudos de Coortes , Feminino , Substância Cinzenta/diagnóstico por imagem , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Ontário , Software , Substância Branca/diagnóstico por imagem
9.
Phys Med Biol ; 51(7): 1831-48, 2006 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-16552108

RESUMO

Estimation of prostate location and volume is essential in determining a dose plan for ultrasound-guided brachytherapy, a common prostate cancer treatment. However, manual segmentation is difficult, time consuming and prone to variability. In this paper, we present a semi-automatic discrete dynamic contour (DDC) model based image segmentation algorithm, which effectively combines a multi-resolution model refinement procedure together with the domain knowledge of the image class. The segmentation begins on a low-resolution image by defining a closed DDC model by the user. This contour model is then deformed progressively towards higher resolution images. We use a combination of a domain knowledge based fuzzy inference system (FIS) and a set of adaptive region based operators to enhance the edges of interest and to govern the model refinement using a DDC model. The automatic vertex relocation process, embedded into the algorithm, relocates deviated contour points back onto the actual prostate boundary, eliminating the need of user interaction after initialization. The accuracy of the prostate boundary produced by the proposed algorithm was evaluated by comparing it with a manually outlined contour by an expert observer. We used this algorithm to segment the prostate boundary in 114 2D transrectal ultrasound (TRUS) images of six patients scheduled for brachytherapy. The mean distance between the contours produced by the proposed algorithm and the manual outlines was 2.70 +/- 0.51 pixels (0.54 +/- 0.10 mm). We also showed that the algorithm is insensitive to variations of the initial model and parameter values, thus increasing the accuracy and reproducibility of the resulting boundaries in the presence of noise and artefacts.


Assuntos
Braquiterapia , Próstata/patologia , Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador , Algoritmos , Humanos , Masculino , Modelos Teóricos
10.
IEEE Trans Med Imaging ; 27(10): 1378-88, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18815090

RESUMO

Atherosclerosis at the carotid bifurcation resulting in cerebral emboli is a major cause of ischemic stroke. Most strokes associated with carotid atherosclerosis can be prevented by lifestyle/dietary changes and pharmacological treatments if identified early by monitoring carotid plaque changes. Registration of 3-D ultrasound (US) images of carotid plaque obtained at different time points is essential for sensitive monitoring of plaque changes in volume and surface morphology. This registration technique should be nonrigid, since different head positions during image acquisition sessions cause relative bending and torsion in the neck, producing nonlinear deformations between the images. We modeled the movement of the neck using a "twisting and bending" model with only six parameters for nonrigid registration. We evaluated the algorithm using 3-D US carotid images acquired at two different head positions to simulate images acquired at different times. We calculated the mean registration error (MRE) between the segmented vessel surfaces in the target image and the registered image using a distance-based error metric after applying our "twisting and bending" model-based nonrigid registration algorithm. We achieved an average registration error of 0.80 +/-0.26 mm using our nonrigid registration technique, which was a significant improvement in registration accuracy over rigid registration, even with reduced degrees-of-freedom compared to the other nonrigid registration algorithms.


Assuntos
Inteligência Artificial , Artérias Carótidas/diagnóstico por imagem , Doenças das Artérias Carótidas/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Reconhecimento Automatizado de Padrão/métodos , Técnica de Subtração , Algoritmos , Simulação por Computador , Humanos , Aumento da Imagem/métodos , Modelos Cardiovasculares , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa