Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(17)2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39274588

RESUMO

In this study, single crystals of (K1-xNax)NbO3 are grown by the self-flux crystal growth method and their phase transitions are studied using a combination of Raman scattering and impedance spectroscopy. X-ray diffraction shows that single crystals have a perovskite structure with monoclinic symmetry. Single crystal X-ray diffraction shows that single crystals have monoclinic symmetry at room temperature with space group P1211. Electron probe microanalysis shows that single crystals are Na-rich and A-site deficient. Temperature-controlled Raman scattering shows that low temperature monoclinic-monoclinic, monoclinic-tetragonal and tetragonal-cubic phase transitions take place at -20 °C, 220 °C and 440 °C. Dielectric property measurements show that single crystals behave as a normal ferroelectric material. Relative or inverse relative permittivity peaks at ~-10 °C, ~230 °C and ~450 °C with hysteresis correspond to the low temperature monoclinic-monoclinic, monoclinic-tetragonal and tetragonal-cubic phase transitions, respectively, consistent with the Raman scattering results. A conduction mechanism with activation energies of about 0.5-0.7 eV was found in the paraelectric phase. Single crystals show polarization-electric field hysteresis loops of a lossy normal ferroelectric. The combination of Raman scattering and impedance spectroscopy is effective in determining the phase transition temperatures of (K1-xNax)NbO3.

2.
Adv Mater ; 34(42): e2205825, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36069028

RESUMO

Interaction between dipoles often emerges intriguing physical phenomena, such as exchange bias in the magnetic heterostructures and magnetoelectric effect in multiferroics, which lead to advances in multifunctional heterostructures. However, the defect-dipole tends to be considered the undesired to deteriorate the electronic functionality. Here, deterministic switching between the ferroelectric and the pinched states by exploiting a new substrate of cubic perovskite, BaZrO3 is reported, which boosts the square-tensile-strain to BaTiO3 and promotes four-variants in-plane spontaneous polarization with oxygen vacancy creation. First-principles calculations propose a complex of an oxygen vacancy and two Ti3+ ions coins a charge-neutral defect-dipole. Cooperative control of the defect-dipole and the spontaneous polarization reveals ternary in-plane polar states characterized by biased/pinched hysteresis loops. Furthermore, it is experimentally demonstrated that three electrically controlled polar-ordering states lead to switchable and nonvolatile dielectric states for application of nondestructive electro-dielectric memory. This discovery opens a new route to develop functional materials via manipulating defect-dipoles and offers a novel platform to advance heteroepitaxy beyond the prevalent perovskite substrates.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa