Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Mar Pollut Bull ; 194(Pt A): 115341, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37595333

RESUMO

Beach-cleans conducted on the west coast of Scotland investigated the distribution of land- and marine-sourced litter and compared these with a particle tracking model representing the presumed principal land-based source. Modelled particles dispersed widely, even reaching the remote northwest coast, with 'hotspots' and 'coldspots' on windward and leeward coasts respectively. In beach sampling, however, land-sourced litter represented only 19% of items by count and 8% by weight, while marine-sourced litter represented 46% by count and 62% by weight. The source of the remainder could not be identified. Windward coasts had an average count of 1859 litter items per 100 m, and weight of 14,862 g per 100 m. Leeward coasts had an average count of 32 litter items per 100 m and weight of 738 g per 100 m. Field observations and model predictions were consistent in many respects for land-sourced litter, however marine-sourced litter is dominant on many coastlines.


Assuntos
Poluição Ambiental , Plásticos , Escócia
2.
Mar Pollut Bull ; 169: 112468, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34049072

RESUMO

The quantity of floating plastic debris (FPD) is continuously being increased in the oceans. To assess their size, structure, and composition along the eastern Arabian Sea (EAS), FPD samples were collected by using a surface plankton net. The microplastic size fraction (0.5-5 mm) was the most prevalent accounting for >50% of the total, followed by mesoplastics (5-25 mm; ~40%) and macroplastics (>25 mm; ~10%). The collected FPDs were categorized into five different types and eight colours. Attenuated Total Reflectance-Fourier Transform Infrared Spectrometry (ATR-FTIR) analysis of the plastics revealed that polypropylene, polyethylene, and nylon were the most dominant polymers, and these comprised mostly of fibre/fishing line. The abundance of FPD in the EAS (0.013 ± 0.012 no.s/m3) was found to be very low compared to elsewhere. The prevalent microplastics presence in the oceans might have occurred mainly by the degradation of larger items. It increases bioavailability, and hence, is a risk to marine ecosystems.


Assuntos
Plásticos , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental , Oceano Índico , Poluentes Químicos da Água/análise
3.
Mar Pollut Bull ; 154: 111092, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32319921

RESUMO

Microplastics are widely dispersed through the marine environment. Few studies have assessed the long-term or historic prevalence of microplastics, yet acquiring such data can inform their distribution, transport and the environmental risks posed. To quantify the distribution and polymer types temporally, sediment cores were collected from >2000 m water depth in the Rockall Trough, North Atlantic Ocean. As hypothesized, a significant negative trend was observed in the frequency of microplastics with increasing sediment age, however there was an increase in polymer diversity. Microplastics were pervasive throughout the sediment analysed (10 cm depth), yet lead-210 (210Pb) activities were confined to the upper 4 cm, indicating this layer to be ~150 years old and thus the presence of microplastics far exceed the production of modern plastic. A number of mechanisms, including sediment reworking, could redistribute microplastics vertically. Additionally, microplastics abundance was significantly correlated with sediment porosity, suggesting interstitial transport via pore waters.


Assuntos
Plásticos , Poluentes Químicos da Água/análise , Oceano Atlântico , Monitoramento Ambiental , Sedimentos Geológicos , Microplásticos
4.
Environ Pollut ; 244: 503-512, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30366298

RESUMO

Although evidence suggests the ubiquity of microplastics in the marine environment, our knowledge of its occurrence within remote habitats, such as the deep sea, is scarce. Furthermore, long term investigations of microplastic abundances are even more limited. Here we present a long-term study of the ingestion of microplastics by two deep-sea benthic invertebrates (Ophiomusium lymani and Hymenaster pellucidus) sampled over four decades. Specimens were collected between the years 1976-2015 from a repeat monitoring site >2000 m deep in the Rockall Trough, North East Atlantic. Microplastics were identified at a relatively consistent level throughout and therefore may have been present at this locality prior to 1976. Considering the mass production of plastics began in the 1940s - 50s our data suggest the relatively rapid occurrence of microplastics within the deep sea. Of the individuals examined (n = 153), 45% had ingested microplastics, of which fibres were most prevalent (95%). A total of eight different polymer types were isolated; polyamide and polyester were found in the highest concentrations and in the majority of years, while low-density polystyrene was only identified in 2015. This study provides an assessment of the historic occurrence of microplastics on the deep seafloor and presents a detailed quantification and characterisation of microplastics ingested by benthic species. Furthermore these data advance our knowledge on the long-term fate of microplastic in marine systems.


Assuntos
Monitoramento Ambiental , Conteúdo Gastrointestinal/química , Plásticos/análise , Polímeros/isolamento & purificação , Estrelas-do-Mar/fisiologia , Poluentes Químicos da Água/análise , Poluição Química da Água/análise , Animais , Oceano Atlântico , Ingestão de Alimentos , Ecossistema , Nylons/análise , Poliésteres/análise , Poliestirenos/análise , Poluentes Químicos da Água/isolamento & purificação
5.
Environ Pollut ; 231(Pt 1): 271-280, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28806692

RESUMO

Microplastics are widespread in the natural environment and present numerous ecological threats. While the ultimate fate of marine microplastics are not well known, it is hypothesized that the deep sea is the final sink for this anthropogenic contaminant. This study provides a quantification and characterisation of microplastic pollution ingested by benthic macroinvertebrates with different feeding modes (Ophiomusium lymani, Hymenaster pellucidus and Colus jeffreysianus) and in adjacent deep water > 2200 m, in the Rockall Trough, Northeast Atlantic Ocean. Despite the remote location, microplastic fibres were identified in deep-sea water at a concentration of 70.8 particles m-3, comparable to that in surface waters. Of the invertebrates examined (n = 66), 48% ingested microplastics with quantities enumerated comparable to coastal species. The number of ingested microplastics differed significantly between species and generalized linear modelling identified that the number of microplastics ingested for a given tissue mass was related to species and not organism feeding mode or the length or overall weight of the individual. Deep-sea microplastics were visually highly degraded with surface areas more than double that of pristine particles. The identification of synthetic polymers with densities greater and less than seawater along with comparable quantities to the upper ocean indicates processes of vertical re-distribution. This study presents the first snapshot of deep ocean microplastics and the quantification of microplastic pollution in the Rockall Trough. Additional sampling throughout the deep-sea is required to assess levels of microplastic pollution, vertical transportation and sequestration, which have the potential to impact the largest global ecosystem.


Assuntos
Monitoramento Ambiental , Invertebrados/química , Plásticos/análise , Poluentes Químicos da Água/análise , Animais , Oceano Atlântico , Ingestão de Alimentos , Ecossistema , Poluição Ambiental , Polímeros , Água do Mar , Poluição Química da Água/estatística & dados numéricos
7.
PLoS One ; 10(5): e0124815, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25992572

RESUMO

In 2009 the NW and SE flanks of Anton Dohrn Seamount were surveyed using multibeam echosounder and video ground-truthing to characterise megabenthic biological assemblages (biotopes) and assess those which clearly adhere to the definition of Vulnerable Marine Ecosystems, for use in habitat mapping. A combination of multivariate analysis of still imagery and video ground-truthing defined 13 comprehensive descriptions of biotopes that function as mapping units in an applied context. The data reveals that the NW and SE sides of Anton Dohrn Seamount (ADS) are topographically complex and harbour diverse biological assemblages, some of which agree with current definitions of 'listed' habitats of conservation concern. Ten of these biotopes could easily be considered Vulnerable Marine Ecosystems; three coral gardens, four cold-water coral reefs, two xenophyophore communities and one sponge dominated community, with remaining biotopes requiring more detailed assessment. Coral gardens were only found on positive geomorphic features, namely parasitic cones and radial ridges, found both sides of the seamount over a depth of 1311-1740 m. Two cold-water coral reefs (equivalent to summit reef) were mapped on the NW side of the seamount; Lophelia pertusa reef associated with the cliff top mounds at a depth of 747-791 m and Solenosmilia variabilis reef on a radial ridge at a depth of 1318-1351 m. Xenophyophore communities were mapped from both sides of the seamount at a depth of 1099-1770 m and were either associated with geomorphic features or were in close proximity (< 100 m) to them. The sponge dominated community was found on the steep escarpment either side of the seamount over at a depth of 854-1345 m. Multivariate diversity revealed the xenophyophore biotopes to be the least diverse, and a hard substratum biotope characterised by serpulids and the sessile holothurian, Psolus squamatus, as the most diverse.


Assuntos
Organismos Aquáticos , Ecossistema , Animais , Antozoários , Oceano Atlântico , Biodiversidade , Conservação dos Recursos Naturais , Recifes de Corais , Biologia Marinha , Análise Multivariada , Poríferos , Escócia , Água do Mar
8.
R Soc Open Sci ; 1(4): 140317, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26064573

RESUMO

Marine debris, mostly consisting of plastic, is a global problem, negatively impacting wildlife, tourism and shipping. However, despite the durability of plastic, and the exponential increase in its production, monitoring data show limited evidence of concomitant increasing concentrations in marine habitats. There appears to be a considerable proportion of the manufactured plastic that is unaccounted for in surveys tracking the fate of environmental plastics. Even the discovery of widespread accumulation of microscopic fragments (microplastics) in oceanic gyres and shallow water sediments is unable to explain the missing fraction. Here, we show that deep-sea sediments are a likely sink for microplastics. Microplastic, in the form of fibres, was up to four orders of magnitude more abundant (per unit volume) in deep-sea sediments from the Atlantic Ocean, Mediterranean Sea and Indian Ocean than in contaminated sea-surface waters. Our results show evidence for a large and hitherto unknown repository of microplastics. The dominance of microfibres points to a previously underreported and unsampled plastic fraction. Given the vastness of the deep sea and the prevalence of microplastics at all sites we investigated, the deep-sea floor appears to provide an answer to the question-where is all the plastic?

9.
PLoS One ; 8(3): e58909, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23527045

RESUMO

The recently completed European Census of Marine Life, conducted within the framework of the global Census of Marine Life programme (2000-2010), markedly enhanced our understanding of marine biodiversity in European Seas, its importance within ecological systems, and the implications for human use. Here we undertake a synthesis of present knowledge of biodiversity in European Seas and identify remaining challenges that prevent sustainable management of marine biodiversity in one of the most exploited continents of the globe. Our analysis demonstrates that changes in faunal standing stock with depth depends on the size of the fauna, with macrofaunal abundance only declining with increasing water depth below 1000 m, whilst there was no obvious decrease in meiofauna with increasing depth. Species richness was highly variable for both deep water macro- and meio- fauna along latitudinal and longitudinal gradients. Nematode biodiversity decreased from the Atlantic into the Mediterranean whilst latitudinal related biodiversity patterns were similar for both faunal groups investigated, suggesting that the same environmental drivers were influencing the fauna. While climate change and habitat degradation are the most frequently implicated stressors affecting biodiversity throughout European Seas, quantitative understanding, both at individual and cumulative/synergistic level, of their influences are often lacking. Full identification and quantification of species, in even a single marine habitat, remains a distant goal, as we lack integrated data-sets to quantify these. While the importance of safeguarding marine biodiversity is recognised by policy makers, the lack of advanced understanding of species diversity and of a full survey of any single habitat raises huge challenges in quantifying change, and facilitating/prioritising habitat/ecosystem protection. Our study highlights a pressing requirement for more complete biodiversity surveys to be undertaken within contrasting habitats, together with investigations in biodiversity-ecosystem functioning links and identification of separate and synergistic/cumulative human-induced impacts on biodiversity.


Assuntos
Biodiversidade , Ecossistema , Oceanos e Mares , Animais , Censos , Conservação dos Recursos Naturais , Europa (Continente) , Geografia , Humanos , Biologia Marinha , Metanálise como Assunto , Avaliação de Programas e Projetos de Saúde
10.
PLoS One ; 8(11): e80510, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24303022

RESUMO

Climatic fluctuations may significantly alter the taxonomic and biochemical composition of phytoplankton blooms and subsequently phytodetritus, the food source for the majority of deep-sea communities. To examine the response of abyssal benthic communities to different food resources we simulated a food sedimentation event containing diatoms and coccolithophorids at Station M in the NE Pacific. In one set of experiments we measured incorporation of diatomC and coccoN into the macrofauna using isotopically enriched (13)C-diatoms and (15)N-coccolithophores. In a second experiment we measured incorporation of C and N from dual-labelled ((13)C and (15)N) diatoms. The second experiment was repeated 2 months later to assess the effect of seasonality. The simulated food pulses represented additions of 650 - 800 mg C m(-2) and 120 mg N m(-2) to the seafloor. In all cases rapid incorporation of tracer was observed within 4 days, with between 20% and 52% of the macrofauna displaying evidence of enrichment. However, incorporation levels of both diatomC and coccoN were low (<0.05% and 0.005% of the added C and N). Incorporation of labelled diatoms was similar during both June and September suggesting that the community was not food limited during either period. We found no evidence for selective ingestion of the different food types in the metazoan fauna suggesting that macrofauna do not have strong preferences for diatom vs. coccolithophore dominated phytodetrital pulses. C∶N ratios from both experiments suggest that the metazoan macrofauna community appear to have higher C demands and/or assimilation efficiencies compared to N. Concomitantly, the foraminifera preferentially selected for diatomN over coccoN, and we suggest that this may be related to foraminiferal requirements for intracellular nitrate. These experiments provide evidence that abyssal faunal feeding strategies are in part driven by an organism's internal stoichiometric budgets and biochemical requirements.


Assuntos
Ecossistema , Sedimentos Geológicos , Biodiversidade , Cadeia Alimentar , Oceanos e Mares
11.
PLoS One ; 7(3): e34098, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22479533

RESUMO

Phytoplankton underpin the marine food web in shelf seas, with some species having properties that are harmful to human health and coastal aquaculture. Pressures such as climate change and anthropogenic nutrient input are hypothesized to influence phytoplankton community composition and distribution. Yet the primary environmental drivers in shelf seas are poorly understood. To begin to address this in North Western European waters, the phytoplankton community composition was assessed in light of measured physical and chemical drivers during the "Ellett Line" cruise of autumn 2001 across the Scottish Continental shelf and into adjacent open Atlantic waters. Spatial variability existed in both phytoplankton and environmental conditions, with clear differences not only between on and off shelf stations but also between different on shelf locations. Temperature/salinity plots demonstrated different water masses existed in the region. In turn, principal component analysis (PCA), of the measured environmental conditions (temperature, salinity, water density and inorganic nutrient concentrations) clearly discriminated between shelf and oceanic stations on the basis of DIN:DSi ratio that was correlated with both salinity and temperature. Discrimination between shelf stations was also related to this ratio, but also the concentration of DIN and DSi. The phytoplankton community was diatom dominated, with multidimensional scaling (MDS) demonstrating spatial variability in its composition. Redundancy analysis (RDA) was used to investigate the link between environment and the phytoplankton community. This demonstrated a significant relationship between community composition and water mass as indexed by salinity (whole community), and both salinity and DIN:DSi (diatoms alone). Diatoms of the Pseudo-nitzschia seriata group occurred at densities potentially harmful to shellfish aquaculture, with the potential for toxicity being elevated by the likelihood of DSi limitation of growth at most stations and depths.


Assuntos
Fitoplâncton/crescimento & desenvolvimento , Água/metabolismo , Aquicultura , Biomassa , Mudança Climática , Interpretação Estatística de Dados , Meio Ambiente , Monitoramento Ambiental/métodos , Europa (Continente) , Eutrofização/fisiologia , Modelos Estatísticos , Oceanografia/métodos , Oceanos e Mares , Filogenia , Análise de Componente Principal , Salinidade , Estações do Ano , Água do Mar/análise , Temperatura , Água/química , Microbiologia da Água
12.
PLoS One ; 6(4): e18602, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21526171

RESUMO

The Faroe-Shetland Channel, located in the NE Atlantic, ranges in depth from 0-1700 m and is an unusual deep-sea environment because of its complex and dynamic hydrographic regime, as well as having numerous different seafloor habitats. Macrofaunal samples have been collected on a 0.5 mm mesh sieve from over 300 stations in a wide area survey and on nested 0.5 and 0.25 mm mesh sieves along a specific depth transect. Contrary to general expectation, macrofauanl biomass in the Channel did not decline with increasing depth. When examined at phylum level, two main biomass patterns with depth were apparent: (a) polychaetes showed little change in biomass on the upper slope then increased markedly below 500 m to a depth of 1100 m before declining; and (b) other phyla showed enhanced biomass between 300-500 m. The polychaete response may be linked with a seafloor environment change to relatively quiescent hydrodynamic conditions and an increasing sediment mud content that occurs at c. 500 m. In contrast, the mid-slope enhancement of other phyla biomass may reflect the hydrodynamically active interface between the warm and cold water masses present in the Channel at c. 300-500 m. Again contrary to expectation, mean macrofaunal body size did not decline with depth, and the relative contribution of smaller (>0.25 mm<0.5 mm) to total (>0.25 mm) macrobenthos did not increase with depth. Overall our total biomass and average individual biomass estimates appear to be greater than those predicted from global analyses. It is clear that global models of benthic biomass distribution may mask significant variations at the local and regional scale.


Assuntos
Biomassa , Meio Ambiente , Animais , Regiões Árticas , Oceano Atlântico , Geografia , Sedimentos Geológicos , Estatísticas não Paramétricas , Temperatura
13.
PLoS One ; 5(12): e15323, 2010 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-21209928

RESUMO

A comprehensive seafloor biomass and abundance database has been constructed from 24 oceanographic institutions worldwide within the Census of Marine Life (CoML) field projects. The machine-learning algorithm, Random Forests, was employed to model and predict seafloor standing stocks from surface primary production, water-column integrated and export particulate organic matter (POM), seafloor relief, and bottom water properties. The predictive models explain 63% to 88% of stock variance among the major size groups. Individual and composite maps of predicted global seafloor biomass and abundance are generated for bacteria, meiofauna, macrofauna, and megafauna (invertebrates and fishes). Patterns of benthic standing stocks were positive functions of surface primary production and delivery of the particulate organic carbon (POC) flux to the seafloor. At a regional scale, the census maps illustrate that integrated biomass is highest at the poles, on continental margins associated with coastal upwelling and with broad zones associated with equatorial divergence. Lowest values are consistently encountered on the central abyssal plains of major ocean basins The shift of biomass dominance groups with depth is shown to be affected by the decrease in average body size rather than abundance, presumably due to decrease in quantity and quality of food supply. This biomass census and associated maps are vital components of mechanistic deep-sea food web models and global carbon cycling, and as such provide fundamental information that can be incorporated into evidence-based management.


Assuntos
Biomassa , Biologia Marinha/métodos , Algoritmos , Animais , Inteligência Artificial , Biodiversidade , Carbono/química , Biologia Computacional/métodos , Ecossistema , Modelos Biológicos , Oceanos e Mares , Análise de Regressão
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa