RESUMO
Transposable elements (TEs), which promote various kinds of mutations, constitute a large fraction of the genome. How they invade natural populations and species is therefore of fundamental importance for understanding the dynamics of genetic diversity and genome composition. On the basis of 85 samples of natural populations of Drosophila simulans, we report the distributions of the genome insertion site numbers of nine TEs that were chosen because they have a low average number of sites. Most populations were found to have 0-3 insertion sites, but some of them had a significantly higher number of sites for a given TE. The populations located in regions outside Africa had the highest number of sites for all elements except HMS Beagle and Coral, suggesting a recent increase in the activity of some TEs associated with the colonization patterns of Drosophila simulans. The element Tirant had a very distinctive pattern of distribution: it was identified mainly in populations from East Africa and some islands in the Indian Ocean, and its insertion site number was low in all these populations. The data suggest that the genome of the entire species of Drosophila simulans may be being invaded by TEs from populations in which they are present in high copy number.
Assuntos
Elementos de DNA Transponíveis , Drosophila/genética , Animais , Hibridização In SituRESUMO
Concanavalin A (lectin from Canavalia ensiformis L., ConA) has previously been shown to act as a feeding inhibitor for Acyrthosiphon pisum, the pea aphid. In the present study a range of histochemical and biochemical techniques were used to elucidate the target tissues and binding sites of the lectin in the aphid. Diet uptake was evaluated using a radioactive tracer (14C-methylated inulin) and demonstrated that adults were capable of ingesting high quantities of the toxin (approx. 1 microg over a 48 h period). Electophoretic analysis and enzyme-linked immuno-sorbent assay of honeydew samples confirmed these results and further demonstrated that only small levels of ConA were excreted. Histofluorescence and immunolocalisation studies on nymphs revealed that the stomach was the primary target for ConA. At concentrations up to 400 microg ml(-1), lectin binding only occurred in the stomach region, however, at high concentrations (800 microg ml(-1)) the whole digestive tract was stained, although there was no evidence of binding in either the oesophagus or rectum. In addition to binding, there was evidence to suggest that ConA was also causing systemic effects in that the lectin appeared to cross the intestinal epithelial barrier. Immunohistochemical and electron microscopy studies revealed that ConA induced severe cellular swelling of the epithelial cells, accompanied by hypersecretion and a progressive detachment of the apical membrane; however, the striated border itself did not appear to be directly affected. Furthermore, there was no lysis of the epithelium, nor loss of integrity of the epithelial cells themselves. Our results suggest that ConA interacts with glycosylated receptors at the surface of the stomach epithelial cells, interfering with normal metabolism and cell function, resulting in a rapid feedback response on feeding behaviour. Whilst our results provide a much greater understanding regarding the modes of action of ConA in insects, they suggest that different lectins, including other mannose binding lectins, have different modes of action at the cellular levels, and thus generalizations should be treated with caution.
Assuntos
Afídeos/fisiologia , Concanavalina A/farmacologia , Trato Gastrointestinal/efeitos dos fármacos , Animais , Afídeos/anatomia & histologia , Afídeos/metabolismo , Afídeos/ultraestrutura , Concanavalina A/metabolismo , Ensaio de Imunoadsorção Enzimática , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/ultraestrutura , Trato Gastrointestinal/metabolismo , Imuno-Histoquímica , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Controle Biológico de VetoresRESUMO
BACKGROUND: Genome size is known to exhibit interspecies differences, but also to vary between populations within a given species and even between individual cells within an organism. Major differences have often been reported and attributed to differences in measurement conditions, in internal controls of genome size, and in the stains used. Flow cytometry using intercalating dyes is the most attractive method for measuring genome size. METHODS: We estimated relative genome size of nuclei from heads of Drosophila melanogaster adult males using a FACScalibur flow cytometer and propidium iodide. RESULTS: We have shown that the genome size estimates depended on the temperature and humidity of the rearing medium and decreased with age in adult flies. There were large differences in genome size estimates between the vials in which the flies were maintained, but only slight variations within the vials, supporting the idea that the size estimate depends on the fly rearing conditions. Changes in the temperature of the solution of head nuclei analyzed by the cytometer also influenced the genome size estimate. CONCLUSIONS: These findings clearly show that the environmental conditions under which the flies were reared influence the genome size estimate, perhaps as a result of a change in the accessibility of the DNA to the fluorochrome. Caution is therefore called for when estimating genome size. Experimental artifact rather than adaptation may account for some of the correlations between genome size and environmental conditions reported in the literature.
Assuntos
Genoma , Animais , Núcleo Celular/metabolismo , Separação Celular , DNA/metabolismo , Drosophila melanogaster , Citometria de Fluxo , Masculino , Propídio/farmacologia , TemperaturaRESUMO
Genome size varies considerably between species, and transposable elements (TEs) are known to play an important role in this variability. However, it is far from clear whether TEs are involved in genome size differences between populations within a given species. We show here that in Drosophila melanogaster and Drosophila simulans the size of the genome varies among populations and is correlated with the TE copy number on the chromosome arms. The TEs embedded within the heterochromatin do not seem to be involved directly in this phenomenon, although they may contribute to differences in genome size. Furthermore, genome size and TE content variations parallel the worldwide colonization of D. melanogaster species. No such relationship exists for the more recently dispersed D. simulans species, which indicates that a quantitative increase in the TEs in local populations and fly migration are sufficient to account for the increase in genome size, with no need for an adaptation hypothesis.