Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 36(14): 2018-2033, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28550152

RESUMO

The double-membrane-bound autophagosome is formed by the closure of a structure called the phagophore, origin of which is still unclear. The endoplasmic reticulum (ER) is clearly implicated in autophagosome biogenesis due to the presence of the omegasome subdomain positive for DFCP1, a phosphatidyl-inositol-3-phosphate (PI3P) binding protein. Contribution of other membrane sources, like the plasma membrane (PM), is still difficult to integrate in a global picture. Here we show that ER-plasma membrane contact sites are mobilized for autophagosome biogenesis, by direct implication of the tethering extended synaptotagmins (E-Syts) proteins. Imaging data revealed that early autophagic markers are recruited to E-Syt-containing domains during autophagy and that inhibition of E-Syts expression leads to a reduction in autophagosome biogenesis. Furthermore, we demonstrate that E-Syts are essential for autophagy-associated PI3P synthesis at the cortical ER membrane via the recruitment of VMP1, the stabilizing ER partner of the PI3KC3 complex. These results highlight the contribution of ER-plasma membrane tethers to autophagosome biogenesis regulation and support the importance of membrane contact sites in autophagy.


Assuntos
Autofagossomos/metabolismo , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Biogênese de Organelas , Fosfatos de Fosfatidilinositol/metabolismo , Animais , Proteínas de Transporte/metabolismo , Cães , Células HeLa , Humanos , Células Madin Darby de Rim Canino , Proteínas de Membrana/metabolismo , Sinaptotagminas/metabolismo
2.
Annu Rev Pharmacol Toxicol ; 57: 375-398, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-28061686

RESUMO

Macroautophagy (hereafter called autophagy) is a vacuolar, lysosomal pathway for catabolism of intracellular material that is conserved among eukaryotic cells. Autophagy plays a crucial role in tissue homeostasis, adaptation to stress situations, immune responses, and the regulation of the inflammatory response. Blockade or uncontrolled activation of autophagy is associated with cancer, diabetes, obesity, cardiovascular disease, neurodegenerative disease, autoimmune disease, infection, and chronic inflammatory disease. During the past decade, researchers have made major progress in understanding the three levels of regulation of autophagy in mammalian cells: signaling, autophagosome formation, and autophagosome maturation and lysosomal degradation. As we discuss in this review, each of these levels is potentially druggable, and, depending on the indication, may be able to stimulate or inhibit autophagy. We also summarize the different modulators of autophagy and their potential and limitations in the treatment of life-threatening diseases.


Assuntos
Autofagia/fisiologia , Transdução de Sinais/fisiologia , Animais , Autofagia/efeitos dos fármacos , Ensaios Clínicos como Assunto/métodos , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Lisossomos/patologia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Transdução de Sinais/efeitos dos fármacos , Sirolimo/análogos & derivados , Sirolimo/farmacologia , Sirolimo/uso terapêutico
5.
Biochim Biophys Acta ; 1862(7): 1367-73, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27085974

RESUMO

AIMS: Triglycerides droplets are massively stored in muscle in Lipid Storage Myopathies (LSM). We studied in muscle regulators of lipophagy, the expression of the transcription factor-EB (TFEB) (a master regulator of lysosomal biogenesis), and markers of autophagy which are induced by starvation and exert a transcriptional control on lipid catabolism. METHODS: We investigated the factors that regulate lipophagy in muscle biopsies from 6 patients with different types of LSM: 2 cases of riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency (MADD), 1 case of primary carnitine deficiency (CD), 2 cases of neutral lipid storage myopathy (NLSD-M), 1 case of carnitine-palmitoyl-transferase-II (CPT) deficiency. RESULTS: Conventional morphology and electron microscopy documented the lipid accumulation and its dramatic resolution after treatment. Muscle immunofluorescence showed that while in MADD and NLSD-M there was a co-localized expression of TFEB and p62-SQSTM1 (marker of protein aggregates) in some atrophic fibers, in CD and CPT-II deficiency the reaction was almost normal. In regenerating fibers, TFEB localized in the cytoplasm (inactive form), whereas in atrophic fibers it localized in the nuclei (active form). Lipid-accumulated/atrophic fibers did not display p62-positive protein aggregates, indicating, together with the LC3-II (marker of autophagosomes) and p62-SQSTM1 analysis, that the autophagic flux is often preserved and lipophagy occurs. CONCLUSION: In atrophic and regenerating fibers of patients with NLSD-M we observed TFEB over-expression; in other conditions autophagy markers are increased, suggesting lipophagy active role on human lipid metabolism.


Assuntos
Cardiomiopatias/patologia , Carnitina O-Palmitoiltransferase/deficiência , Carnitina/deficiência , Hiperamonemia/patologia , Erros Inatos do Metabolismo Lipídico/patologia , Lipólise , Erros Inatos do Metabolismo/patologia , Deficiência Múltipla de Acil Coenzima A Desidrogenase/patologia , Músculos/patologia , Doenças Musculares/patologia , Distrofias Musculares/patologia , Adolescente , Adulto , Idoso , Autofagia , Cardiomiopatias/metabolismo , Carnitina/metabolismo , Carnitina O-Palmitoiltransferase/metabolismo , Criança , Feminino , Humanos , Hiperamonemia/metabolismo , Erros Inatos do Metabolismo Lipídico/metabolismo , Masculino , Erros Inatos do Metabolismo/metabolismo , Deficiência Múltipla de Acil Coenzima A Desidrogenase/metabolismo , Músculos/metabolismo , Doenças Musculares/metabolismo , Distrofias Musculares/metabolismo
6.
Am J Physiol Cell Physiol ; 311(3): C351-62, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27335173

RESUMO

Macroautophagy (hereafter called autophagy) is a vacuolar lysosomal pathway for degradation of intracellular material in eukaryotic cells. Autophagy plays crucial roles in tissue homeostasis, in adaptation to stress situations, and in immune and inflammatory responses. Alteration of autophagy is associated with cancer, diabetes and obesity, cardiovascular disease, neurodegenerative disease, autoimmune disease, infection, and chronic inflammatory disease. Autophagy is controlled by autophagy-related (ATG) proteins that act in a coordinated manner to build up the initial autophagic vacuole named the autophagosome. It is now known that the activities of ATG proteins are modulated by posttranslational modifications such as phosphorylation, ubiquitination, and acetylation. Moreover, transcriptional and epigenetic controls are involved in the regulation of autophagy in stress situations. Here we summarize and discuss how posttranslational modifications and transcriptional and epigenetic controls regulate the involvement of autophagy in the proteostasis network.


Assuntos
Autofagia/genética , Processamento de Proteína Pós-Traducional/genética , Transcrição Gênica/genética , Animais , Epigênese Genética/genética , Homeostase/genética , Humanos
7.
Acta Myol ; 33(3): 119-26, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25873780

RESUMO

Muscle fatigability and atrophy are frequent clinical signs in limb girdle muscular dystrophy (LGMD), but their pathogenetic mechanisms are still poorly understood. We review a series of different factors that may be connected in causing fatigue and atrophy, particularly considering the role of neuronal nitric oxide synthase (nNOS) and additional factors such as gender in different forms of LGMD (both recessive and dominant) underlying different pathogenetic mechanisms. In sarcoglycanopathies, the sarcolemmal nNOS reactivity varied from absent to reduced, depending on the residual level of sarcoglycan complex: in cases with complete sarcoglycan complex deficiency (mostly in beta-sarcoglycanopathy), the sarcolemmal nNOS reaction was absent and it was always associated with early severe clinical phenotype and cardiomyopathy. Calpainopathy, dysferlinopathy, and caveolinopathy present gradual onset of fatigability and had normal sarcolemmal nNOS reactivity. Notably, as compared with caveolinopathy and sarcoglycanopathies, calpainopathy and dysferlinopathy showed a higher degree of muscle fiber atrophy. Males with calpainopathy and dysferlinopathy showed significantly higher fiber atrophy than control males, whereas female patients have similar values than female controls, suggesting a gender difference in muscle fiber atrophy with a relative protection in females. In female patients, the smaller initial muscle fiber size associated to endocrine factors and less physical effort might attenuate gender-specific muscle loss and atrophy.


Assuntos
Músculo Esquelético , Distrofia Muscular do Cíngulo dos Membros , Óxido Nítrico Sintase Tipo I/metabolismo , Atrofia , Feminino , Humanos , Masculino , Fadiga Muscular , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular do Cíngulo dos Membros/classificação , Distrofia Muscular do Cíngulo dos Membros/etiologia , Distrofia Muscular do Cíngulo dos Membros/metabolismo , Distrofia Muscular do Cíngulo dos Membros/patologia , Distrofia Muscular do Cíngulo dos Membros/fisiopatologia , Fatores Sexuais
8.
Hum Mutat ; 31(9): E1658-69, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20635405

RESUMO

Variants of unknown significance in the CAPN3 gene constitute a significant challenge for genetic counselling. Despite the frequency of intronic nucleotide changes in this gene (15-25% of all mutations), so far their pathogenicity has only been inferred by in-silico analysis, and occasionally, proven by RNA analysis. In this study, 5 different intronic variants (one novel) that bioinformatic tools predicted would affect RNA splicing, underwent comprehensive studies which were designed to prove they are disease-causing. Muscle mRNA from 15 calpainopathy patients was analyzed by RT-PCR and splicing-specific-PCR tests. We established the previously unrecognized pathogenicity of these mutations, which caused aberrant splicing, most frequently by the activation of cryptic splicing sites or, occasionally, by exon skipping. The absence or severe reduction of protein demonstrated their deleterious effect at translational level. We concluded that bioinformatic tools are valuable to suggest the potential effects of intronic variants; however, the experimental demonstration of the pathogenicity is not always easy to do even when using RNA analysis (low abundance, degradation mechanisms), and it might not be successful unless splicing-specific-PCR tests are used. A comprehensive approach is therefore recommended to identify and describe unclassified variants in order to offer essential data for basic and clinical geneticists.


Assuntos
Calpaína/genética , Íntrons/genética , Proteínas Musculares/genética , Mutação/genética , Biossíntese de Proteínas/genética , Transcrição Gênica , Sequência de Bases , Humanos , Dados de Sequência Molecular , RNA/genética , Splicing de RNA/genética
11.
J Inherit Metab Dis ; 33 Suppl 3: S389-93, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20830524

RESUMO

Pompe disease (PD) is a metabolic myopathy caused by a deficiency of acid-alpha glucosidase (GAA), a lysosomal enzyme that cleaves glycogen. The classic infantile-onset form is characterised by severe hypotonia and cardiomyopathy. Untreated patients usually die within the first year of life due to cardiorespiratory failure. Several studies involving patients with infantile-onset PD have shown that enzyme replacement therapy (ERT) with alglucosidase alfa, recombinant human GAA (rhGAA), significantly prolongs survival, decreases cardiomegaly, and improves cardiac function and conduction abnormalities. However, the efficacy on motor, cognitive and social milestones appears to be more related to the condition of the patient before the start of treatment. To date, the sample of early diagnosed and treated patients is small and the length of follow-up is still limited. We report the results of a long-term follow-up of one patient presenting severe bradycardia and cardiomyopathy at birth, diagnosed in the third day of life and successfully treated by ERT. Serum muscle enzymes at diagnosis were AST 200 U/L, ALT 99 U/L and CPK 731 U/L (n.v. 0-295); the molecular study identified the homozygous missense mutation c.1933 G> A p.Asp645Asn (GAA exon 14). Left Ventricular Mass Index (LVMI) at baseline was 171 g/m(2) (Z-score = 4.3) and decreased to normal values since the 3-month follow-up. A muscle biopsy performed at 18 months after the start of therapy, showed only a low degree of muscle involvement. To our knowledge, this is the longest ERT treatment follow-up in a symptomatic neonatal patient with Pompe disease.


Assuntos
Terapia de Reposição de Enzimas , Doença de Depósito de Glicogênio Tipo II/tratamento farmacológico , alfa-Glucosidases/deficiência , alfa-Glucosidases/uso terapêutico , Biópsia , Bradicardia/diagnóstico , Bradicardia/tratamento farmacológico , Bradicardia/etiologia , Cardiomiopatias/diagnóstico , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/etiologia , Análise Mutacional de DNA , Diagnóstico Precoce , Feminino , Predisposição Genética para Doença , Doença de Depósito de Glicogênio Tipo II/complicações , Doença de Depósito de Glicogênio Tipo II/diagnóstico , Doença de Depósito de Glicogênio Tipo II/enzimologia , Homozigoto , Humanos , Lactente , Recém-Nascido , Mutação de Sentido Incorreto , Fenótipo , Valor Preditivo dos Testes , Índice de Gravidade de Doença , Fatores de Tempo , Resultado do Tratamento , alfa-Glucosidases/genética
12.
Autophagy ; 16(6): 1143-1144, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32102612

RESUMO

Primary cilium-dependent macroautophagy/autophagy is induced by the urinary flow in epithelial cells of the kidney proximal tubule. A major physiological outcome of this cascade is the control of cell size. Some components of the ATG machinery are recruited at the primary cilium to generate autophagic structures. Shear stress induced by the liquid flow promotes PtdIns3P synthesis at the primary cilium, and this lipid is required both for ciliogenesis and initiation of autophagy. We showed that PtdIns3P is generated by PIK3C2A, but not by PIK3C3/VPS34, during flow-associated primary cilium-dependent autophagy, in a ULK1-independent manner. Along the same line BECN1 (beclin 1), a partner of PIK3C3 in starvation-induced autophagy, is not recruited at the primary cilium under shear stress. Thus, kidney epithelial cells mobilize different PtdIns 3-kinases, i.e., PIK3C2A or PIK3C3, to produce PtdIns3P in order to initiate autophagy depending on the stimuli (shear stress or starvation). ABBREVIATIONS: PtdIns3P: phosphatidylinositol-3-phosphate; PIK3C2A: class two alpha phosphatidylinositol 3-kinase; PIK3C3/VPS34: class three phosphatidylinositol 3-kinase; ATG: autophagy associated genes.


Assuntos
Autofagia , Classe III de Fosfatidilinositol 3-Quinases , Cílios , Fosfatos de Fosfatidilinositol
13.
Nat Commun ; 11(1): 294, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31941925

RESUMO

Cells subjected to stress situations mobilize specific membranes and proteins to initiate autophagy. Phosphatidylinositol-3-phosphate (PI3P), a crucial lipid in membrane dynamics, is known to be essential in this context. In addition to nutriments deprivation, autophagy is also triggered by fluid-flow induced shear stress in epithelial cells, and this specific autophagic response depends on primary cilium (PC) signaling and leads to cell size regulation. Here we report that PI3KC2α, required for ciliogenesis and PC functions, promotes the synthesis of a local pool of PI3P upon shear stress. We show that PI3KC2α depletion in cells subjected to shear stress abolishes ciliogenesis as well as the autophagy and related cell size regulation. We finally show that PI3KC2α and VPS34, the two main enzymes responsible for PI3P synthesis, have different roles during autophagy, depending on the type of cellular stress: while VPS34 is clearly required for starvation-induced autophagy, PI3KC2α participates only in shear stress-dependent autophagy.


Assuntos
Autofagia/fisiologia , Cílios/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Animais , Linhagem Celular , Tamanho Celular , Classe III de Fosfatidilinositol 3-Quinases/genética , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Regulação Enzimológica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Fosfatidilinositol 3-Quinases/genética , Estresse Mecânico
14.
J Neuropathol Exp Neurol ; 68(4): 383-90, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19287313

RESUMO

Reduction of neuronal nitric oxide synthase (nNOS) has been associated with the pathogenesis and clinical expression of inherited myopathies. To determine whether a defect in nNOS might be an adverse modulating factor in the course of limb-girdle muscular dystrophy, we investigated cytosolic and sarcolemmal nNOS expression in muscle biopsies from 32 patients with 7 forms of limb-girdle muscular dystrophy. Primary calpainopathy, dysferlinopathy, and caveolinopathy biopsies showed normal levels of cytosolic nNOS and preserved sarcolemmal nNOS immunoreactivity. By contrast, the cytosolic nNOS levels in sarcoglycanopathy muscles were variably reduced. Sarcolemmal nNOS immunoreactivity varied from absent to reduced, depending on the integrity of the sarcoglycan complex. In muscles with loss of the entire sarcoglycan complex, sarcolemmal nNOS was absent; it otherwise depended on the specific sarcoglycan gene and type of mutation. The integrity of the entire sarcoglycan complex is, therefore, essential for the stabilization of nNOS to the sarcolemma. Absence of sarcolemmal nNOS in sarcoglycanopathy muscle was always associated with severe muscular dystrophy and sometimes with dilated cardiomyopathy, supporting the hypothesis that nNOS defect might contribute to skeletal and cardiac muscle disease progression. These results emphasize the value of nNOS immunohistochemical analysis in limb-girdle muscular dystrophy and provide additional insights for future therapeutic interventions in these disorders.


Assuntos
Músculo Esquelético/citologia , Distrofia Muscular do Cíngulo dos Membros/enzimologia , Distrofia Muscular do Cíngulo dos Membros/patologia , Óxido Nítrico Sintase Tipo I/deficiência , Sarcolema/enzimologia , Adolescente , Adulto , Biópsia/métodos , Caveolina 3/metabolismo , Criança , Citosol/enzimologia , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/enzimologia , Sarcoglicanas/classificação , Sarcoglicanas/metabolismo , Adulto Jovem
15.
Autophagy ; 13(9): 1602-1612, 2017 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-28813193

RESUMO

Phosphatidylinositol 3-phosphate (PtdIns3P) is a key player of membrane trafficking regulation, mostly synthesized by the PIK3C3 lipid kinase. The presence of PtdIns3P on endosomes has been demonstrated; however, the role and dynamics of the pool of PtdIns3P dedicated to macroautophagy/autophagy remains elusive. Here we addressed this question by studying the mobilization of PtdIns3P in time and space during autophagosome biogenesis. We compared different dyes known to specifically detect PtdIns3P by fluorescence microscopy analysis, based on PtdIns3P-binding FYVE and PX domains, and show that these transfected dyes induce defects in endosomal dynamics as well as artificial and sustained autophagosome formation. In contrast, indirect use of recombinant FYVE enabled us to track and discriminate endosomal and autophagosomal pools of PtdIns3P. We used this method to analyze localization and dynamics of PtdIns3P subdomains on the endoplasmic reticulum, at sites of pre-autophagosome associated protein recruitment such as the PtdIns3P-binding ZFYVE1/DFCP1 and WIPI2 autophagy regulators. This approach thus revealed the presence of a specific pool of PtdIns3P at the site where autophagosome assembly is initiated.


Assuntos
Autofagossomos/metabolismo , Membranas Intracelulares/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Autofagia , Sobrevivência Celular , Retículo Endoplasmático/metabolismo , Endossomos/metabolismo , Células HeLa , Humanos , Cinética , Microscopia de Fluorescência , Domínios Proteicos , Transfecção
16.
Mol Cell Oncol ; 4(5): e1356431, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29057312

RESUMO

The biogenesis of autophagosome, the double membrane bound organelle related to macro-autophagy, is a complex event requiring numerous key-proteins and membrane remodeling events. Our recent findings identify the extended synaptotagmins, crucial tethers of Endoplasmic Reticulum-plasma membrane contact sites, as key-regulators of this molecular sequence.

17.
FEBS J ; 284(9): 1267-1278, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27973739

RESUMO

Phosphatidylinositol-3-phosphate (PI3P) is a key player in membrane dynamics and trafficking regulation. Most PI3P is associated with endosomal membranes and with the autophagosome preassembly machinery, presumably at the endoplasmic reticulum. The enzyme responsible for most PI3P synthesis, VPS34 and proteins such as Beclin1 and ATG14L that regulate PI3P levels are positive modulators of autophagy initiation. It had been assumed that a local PI3P pool was present at autophagosomes and preautophagosomal structures, such as the omegasome and the phagophore. This was recently confirmed by the demonstration that PI3P-binding proteins participate in the complex sequence of signalling that results in autophagosome assembly and activity. Here we summarize the historical discoveries of PI3P lipid kinase involvement in autophagy, and we discuss the proposed role of PI3P during autophagy, notably during the autophagosome biogenesis sequence.


Assuntos
Autofagossomos/fisiologia , Autofagia , Microdomínios da Membrana/fisiologia , Modelos Biológicos , Biogênese de Organelas , Fosfatos de Fosfatidilinositol/metabolismo , Sistemas do Segundo Mensageiro , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Autofagossomos/enzimologia , Proteínas Relacionadas à Autofagia/metabolismo , Proteína Beclina-1/metabolismo , Classe II de Fosfatidilinositol 3-Quinases/metabolismo , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/fisiologia , Endossomos/enzimologia , Endossomos/fisiologia , Humanos , Lisossomos/enzimologia , Lisossomos/fisiologia , Microdomínios da Membrana/enzimologia
18.
Cell Death Dis ; 8(1): e2565, 2017 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-28102838

RESUMO

The autophagy-lysosome system is critical for muscle homeostasis and defects in lysosomal function result in a number of inherited muscle diseases, generally referred to as autophagic vacuolar myopathies (AVMs). Among them, Danon Disease (DD) and glycogen storage disease type II (GSDII) are due to primary lysosomal protein defects. DD is characterized by mutations in the lysosome-associated membrane protein 2 (LAMP2) gene. The DD mouse model suggests that inefficient lysosome biogenesis/maturation and impairment of autophagosome-lysosome fusion contribute to the pathogenesis of muscle wasting. To define the role of autophagy in human disease, we analyzed the muscle biopsies of DD patients and monitored autophagy and several autophagy regulators like transcription factor EB (TFEB), a master player in lysosomal biogenesis, and vacuolar protein sorting 15 (VPS15), a critical factor for autophagosome and endosome biogenesis and trafficking. Furthermore, to clarify whether the mechanisms involved are shared by other AVMs, we extended our mechanistic study to a group of adult GSDII patients. Our data show that, similar to GSDII, DD patients display an autophagy block that correlates with the severity of the disease. Both DD and GSDII show accumulation and altered localization of VPS15 in autophagy-incompetent fibers. However, TFEB displays a different pattern between these two lysosomal storage diseases. Although in DD TFEB and downstream targets are activated, in GSDII patients TFEB is inhibited. These findings suggest that these regulatory factors may have an active role in the pathogenesis of these diseases. Therapeutic approaches targeted to normalize these factors and restore the autophagic flux in these patients should therefore be considered.


Assuntos
Autofagia/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Doença de Depósito de Glicogênio Tipo II/genética , Doença de Depósito de Glicogênio Tipo IIb/genética , Proteína VPS15 de Distribuição Vacuolar/genética , Adolescente , Adulto , Animais , Modelos Animais de Doenças , Feminino , Doença de Depósito de Glicogênio Tipo II/metabolismo , Doença de Depósito de Glicogênio Tipo II/patologia , Doença de Depósito de Glicogênio Tipo IIb/metabolismo , Doença de Depósito de Glicogênio Tipo IIb/patologia , Humanos , Proteína 2 de Membrana Associada ao Lisossomo/genética , Lisossomos/genética , Lisossomos/patologia , Masculino , Camundongos , Músculos/metabolismo , Músculos/patologia , Mutação
19.
Commun Integr Biol ; 10(5-6): e1401699, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29259731

RESUMO

Endoplasmic Reticulum (ER), spreading in the whole cell cytoplasm, is a central player in eukaryotic cell homeostasis, from plants to mammals. Beside crucial functions, such as membrane lipids and proteins synthesis and outward transport, the ER is able to connect to virtually every endomembrane compartment by specific tethering molecular machineries, which enables the establishment of membrane-membrane contact sites. ER-mitochondria contact sites have been shown to be involved in autophagosome biogenesis, the main organelle of the autophagy degradation pathway. More recently we demonstrated that also ER-plasma membrane contact sites are sites for autophagosomes assembly, suggesting that more generally ER-organelles contacts are involved in autophagy and organelle biogenesis. Here we aim to discuss the functioning of ER-driven contact sites in mammals and plants and more in particular emphasize on their recently highlighted function in autophagy to finally conclude on some key questions that may be useful for further research in the field.

20.
Essays Biochem ; 61(6): 649-661, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29233875

RESUMO

Although cells are a part of the whole organism, classical dogma emphasizes that individual cells function autonomously. Many physiological and pathological conditions, including cancer, and metabolic and neurodegenerative diseases, have been considered mechanistically as cell-autonomous pathologies, meaning those that damage or defect within a selective population of affected cells suffice to produce disease. It is becoming clear, however, that cells and cellular processes cannot be considered in isolation. Best known for shuttling cytoplasmic content to the lysosome for degradation and repurposing of recycled building blocks such as amino acids, nucleotides, and fatty acids, autophagy serves a housekeeping function in every cell and plays key roles in cell development, immunity, tissue remodeling, and homeostasis with the surrounding environment and the distant organs. In this review, we underscore the importance of taking interactions with the microenvironment into consideration while addressing the cell autonomous and non-autonomous functions of autophagy between cells of the same and different types and in physiological and pathophysiological situations.


Assuntos
Autofagia/fisiologia , Animais , Autofagia/genética , Citoplasma/metabolismo , Humanos , Lisossomos/genética , Lisossomos/metabolismo , Neoplasias/genética , Neoplasias/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa