RESUMO
Dysfunctional RNA processing caused by genetic defects in RNA processing enzymes has a profound impact on the nervous system, resulting in neurodevelopmental conditions. We characterized a recessive neurological disorder in 18 children and young adults from 10 independent families typified by intellectual disability, motor developmental delay and gait disturbance. In some patients peripheral neuropathy, corpus callosum abnormalities and progressive basal ganglia deposits were present. The disorder is associated with rare variants in NUDT2, a mRNA decapping and Ap4A hydrolysing enzyme, including novel missense and in-frame deletion variants. We show that these NUDT2 variants lead to a marked loss of enzymatic activity, strongly implicating loss of NUDT2 function as the cause of the disorder. NUDT2-deficient patient fibroblasts exhibit a markedly altered transcriptome, accompanied by changes in mRNA half-life and stability. Amongst the most up-regulated mRNAs in NUDT2-deficient cells, we identified host response and interferon-responsive genes. Importantly, add-back experiments using an Ap4A hydrolase defective in mRNA decapping highlighted loss of NUDT2 decapping as the activity implicated in altered mRNA homeostasis. Our results confirm that reduction or loss of NUDT2 hydrolase activity is associated with a neurological disease, highlighting the importance of a physiologically balanced mRNA processing machinery for neuronal development and homeostasis.
Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Criança , Adulto Jovem , Humanos , RNA Mensageiro/genética , Monoéster Fosfórico Hidrolases/genética , Transtornos do Neurodesenvolvimento/genética , Deficiência Intelectual/genética , Nudix HidrolasesRESUMO
We aimed to detect the causative gene in five unrelated families with recessive inheritance pattern neurological disorders involving the central nervous system, and the potential function of the NEMF gene in the central nervous system. Exome sequencing (ES) was applied to all families and linkage analysis was performed on family 1. A minigene assay was used to validate the splicing effect of the relevant discovered variants. Immunofluorescence (IF) experiment was performed to investigate the role of the causative gene in neuron development. The large consanguineous family confirms the phenotype-causative relationship with homozygous frameshift variant (NM_004713.6:c.2618del) as revealed by ES. Linkage analysis of the family showed a significant single-point LOD of 4.5 locus. Through collaboration in GeneMatcher, four additional unrelated families' likely pathogenic NEMF variants for a spectrum of central neurological disorders, two homozygous splice-site variants (NM_004713.6:c.574+1G>T and NM_004713.6:c.807-2A>C) and a homozygous frameshift variant (NM_004713.6: c.1234_1235insC) were subsequently identified and segregated with all affected individuals. We further revealed that knockdown (KD) of Nemf leads to impairment of axonal outgrowth and synapse development in cultured mouse primary cortical neurons. Our study demonstrates that disease-causing biallelic NEMF variants result in central nervous system impairment and other variable features. NEMF is an important player in mammalian neuron development.
Assuntos
Antígenos de Neoplasias/genética , Axônios , Doenças do Sistema Nervoso Central/genética , Mutação com Perda de Função , Proteínas de Transporte Nucleocitoplasmático/genética , Polineuropatias/genética , Adolescente , Adulto , Alelos , Animais , Encéfalo/metabolismo , Células Cultivadas , Consanguinidade , Feminino , Perfilação da Expressão Gênica , Genes Recessivos , Homozigoto , Humanos , Masculino , Camundongos Endogâmicos C57BL , Linhagem , RNA-Seq , Sequenciamento do Exoma , Adulto JovemRESUMO
INTRODUCTION: Propionic acidemia (PA) and methylmalonic acidemia (MMA) are rare autosomal recessive inborn errors of metabolism characterized by hyperammonemia due to N-acetylglutamate synthase (NAGS) dysfunction. Carglumic acid (Carbaglu®; Orphan Europe Ltd.) is approved by the US Food and Drug Administration (USFDA) for the treatment of hyperammonemia due hepatic NAGS deficiency. Here we report the rationale and design of a phase IIIb trial that is aimed at determining the long-term efficacy and safety of carglumic acid in the management of PA and MMA. METHODS: This prospective, multicenter, open-label, randomized, parallel group phase IIIb study will be conducted in Saudi Arabia. Patients with PA or MMA (≤15 years of age) will be randomized 1:1 to receive twice daily carglumic acid (50 mg/kg/day) plus standard therapy (protein-restricted diet, L-carnitine, and metronidazole) or standard therapy alone for a 2-year treatment period. The primary efficacy outcome is the number of emergency room visits due to hyperammonemia. Safety will be assessed throughout the study and during the 1 month follow-up period after the study. DISCUSSION: Current guidelines recommend conservative medical treatment as the main strategy for the management of PA and MMA. Although retrospective studies have suggested that long-term carglumic acid may be beneficial in the management of PA and MMA, current literature lacks evidence for this indication. This clinical trial will determine the long-term safety and efficacy of carglumic acid in the management of PA and MMA. TRIAL REGISTRATION: King Abdullah International Medical Research Center ( KAIMRC ): (RC13/116) 09/1/2014. Saudi Food and Drug Authority (SFDA) (33066) 08/14/2014. ClinicalTrials.gov (identifier: NCT02426775) 04/22/2015.
Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/tratamento farmacológico , Ensaios Clínicos Fase III como Assunto , Glutamatos/uso terapêutico , Acidemia Propiônica/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto , Adolescente , Carnitina/uso terapêutico , Criança , Dieta com Restrição de Proteínas , Esquema de Medicação , Término Precoce de Ensaios Clínicos , Glutamatos/efeitos adversos , Humanos , Metronidazol/uso terapêutico , Estudos Multicêntricos como Assunto , Acidemia Propiônica/terapia , Estudos Prospectivos , Tamanho da Amostra , Arábia SauditaRESUMO
Primary and secondary conditions leading to thiamine deficiency have overlapping features in children, presenting with acute episodes of encephalopathy, bilateral symmetric brain lesions, and high excretion of organic acids that are specific of thiamine-dependent mitochondrial enzymes, mainly lactate, alpha-ketoglutarate, and branched chain keto-acids. Undiagnosed and untreated thiamine deficiencies are often fatal or lead to severe sequelae. Herein, we describe the clinical and genetic characterization of 79 patients with inherited thiamine defects causing encephalopathy in childhood, identifying outcome predictors in patients with pathogenic SLC19A3 variants, the most common genetic etiology. We propose diagnostic criteria that will aid clinicians to establish a faster and accurate diagnosis so that early vitamin supplementation is considered. Ann Neurol 2017;82:317-330.
Assuntos
Deficiência de Tiamina/genética , Adolescente , Idade de Início , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Proteínas de Membrana Transportadoras/genética , Proteínas de Transporte da Membrana Mitocondrial , Mutação , Prognóstico , Taxa de Sobrevida , Deficiência de Tiamina/mortalidade , Adulto JovemRESUMO
Cobalamin (vitamin B12 [Cbl]) is an essential cofactor for many biochemical pathways. Transcobalamin (TC) is required to internalize Cbl into the cells through membrane receptor-mediated endocytosis. Cbl is then processed in the cytoplasm and mitochondria by complementation factors leading to its active metabolites; methylcobalamin and 5-deoxyadenosyl-cobalamin. Deficiency of TC results in an elevation in methylmalonic acid and homocysteine. Patients usually present with macrocytic anemia, pancytopenia, failure to thrive, gastrointestinal symptoms, and neurological dysfunction. In this study, we report 4 patients from 2 unrelated families, with confirmed diagnosis of TC deficiency. Patients initially had a typical presentation of TC deficiency: severe diarrhea and vomiting, recurrent infections, stomatitis, macrocytic anemia, and neutropenia. Interestingly one of the patients was diagnosed at 3 months of age and developed ataxic gait related to cerebellar atrophy at the age of 14 months. His elder affected sibling was diagnosed at 5 months of age was completely normal. Two sibs, diagnosed at 2 months of age and immediately after birth, had autism spectrum disorder. Molecular investigations showed 2 novel mutations in TCN2 gene. Patients were treated and stayed stable on weekly injection of Cbl. In conclusion, TC deficiency has a wide heterogeneity in clinical phenotype, genotype, laboratory, and radiologic findings. Early detection of the disease and early initiation of aggressive parenteral treatment is probably associated with better prognosis and disease control.
Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Mutação , Transcobalaminas/deficiência , Transcobalaminas/genética , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/etiologia , Biomarcadores , Encéfalo/patologia , Pré-Escolar , Análise Mutacional de DNA , Fibroblastos/metabolismo , Seguimentos , Humanos , Lactente , Recém-Nascido , Imageamento por Ressonância Magnética/métodos , Masculino , Vitamina B 12/análogos & derivados , Vitamina B 12/sangue , Vitamina B 12/metabolismoRESUMO
BACKGROUND: Cystinuria is an inherited metabolic disease that is caused by defects in two genes, SLC3A1 and SLC7A9, which result in a renal reabsorptive defect of cystine and other dibasic amino acids, including ornithine, arginine, and lysine. Patients usually present with recurrent renal calculi and may develop renal impairment. Medical management includes high fluid intake and chelating agents. To the best of our knowledge, this is the first study describing cystinuria in Saudi Arabia. METHODS: A retrospective chart review for cystinuria patients from the genetic and nephrology divisions between 2010 to 2015. All patients were investigated, diagnosed and treated at King Abdulaziz Medical City in Saudi Arabia. RESULTS: Eight patients were identified from five unrelated families. The age of onset ranged from birth to 14 years. The female to male ratio was 1.7:1. Two new variants in the SLC3A1 and SLC9A7 genes were discovered. All of the detected mutations were missense variants in three different exons, such as c.1711 T > A (p.Cys571Ser) (exon 10), c.1166C > T p.Thr389Met (exon 11) and c.1400 T > A p.Met467Lys (exon 8). Additionally, 37.5% of our patients developed arterial hypertension and 25% had urinary tract infection, but none had renal impairment. No significant clinical differences were detected in this study between type A (SLC3A1 variants) and type B cystinuria (SLC7A9 variant). Two cases were diagnosed based on clinical information, biochemical testing and a positive family history as all of the molecular testing for cystinuria was negative. CONCLUSION: Cystinuria has wide genetic heterogeneity with a poor genotype/phenotype correlation. Negative molecular investigations should not rule out the disease if clinical and biochemical investigations support the diagnosis. A larger data registry is essential to better describe the cystinuria genotype/phenotype in Saudi Arabia.
Assuntos
Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Neutros/genética , Cistinúria/genética , Adolescente , Adulto , Idade de Início , Criança , Cistinúria/complicações , Feminino , Humanos , Hipertensão/etiologia , Masculino , Mutação de Sentido Incorreto , Estudos Retrospectivos , Arábia Saudita , Infecções Urinárias/etiologia , Adulto JovemRESUMO
Iron_sulfur clusters (ISCs) are known to play a major role in various protein functions. Located in the mitochondria, cytosol, endoplasmic reticulum and nucleus, they contribute to various core cellular functions. Until recently, only a few human diseases related to mitochondrial ISC biogenesis defects have been described. Such diseases include Friedreich ataxia, combined oxidative phosphorylation deficiency 19, infantile complex II/III deficiency defect, hereditary myopathy with lactic acidosis and mitochondrial muscle myopathy, lipoic acid biosynthesis defects, multiple mitochondrial dysfunctions syndromes and non ketotic hyperglycinemia due to glutaredoxin 5 gene defect. Disorders of mitochondrial import, export and translation, including sideroblastic anemia with ataxia, EVEN-PLUS syndrome and mitochondrial complex I deficiency due to nucleotide-binding protein-like protein gene defect, have also been implicated in ISC biogenesis defects. With advances in next generation sequencing technologies, more disorders related to ISC biogenesis defects are expected to be elucidated. In this article, we aim to shed the light on mitochondrial ISC biogenesis, related proteins and their function, pathophysiology, clinical phenotypes of related disorders, diagnostic approach, and future implications.
Assuntos
Proteínas Ferro-Enxofre/metabolismo , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , HumanosRESUMO
Glycine cleavage system (GCS) catalyzes the degradation of glycine and disruption of its components encoded by GLDC, AMT and GCSH are the only known causes of glycine encephalopathy, also known as non-ketotic hyperglycinemia (NKH). In this report, we describe a consanguineous family with one child who presented with NKH, but harbored no pathogenic variants in any of the three genes linked to this condition. Whole-exome sequencing revealed a novel homozygous missense variant in exon 9 of SLC6A9 NM_201649.3: c.1219 A>G (p.Ser407Gly) that segregates with the disease within the family. This variant replaces the highly conserved S407 in the ion-binding site of this glycine transporter and is predicted to disrupt its function. In murine model, knockout of Slc6a9 is associated with equivalent phenotype of NKH, namely respiratory distress and hypotonia. This is the first demonstration that mutation of the glycine transporter can be associated with NKH in humans.
Assuntos
Sequência de Bases/genética , Proteínas da Membrana Plasmática de Transporte de Glicina/genética , Hiperglicinemia não Cetótica/genética , Mutação/genética , Aminoácido Oxirredutases/genética , Animais , Proteínas de Transporte/genética , Exoma/genética , Feminino , Glicina/metabolismo , Homozigoto , Humanos , Hiperglicinemia não Cetótica/patologia , Lactente , Camundongos , Camundongos Knockout , Complexos Multienzimáticos/genética , Fenótipo , Transferases/genéticaRESUMO
SNURPORTIN-1, encoded by SNUPN, plays a central role in the nuclear import of spliceosomal small nuclear ribonucleoproteins. However, its physiological function remains unexplored. In this study, we investigate 18 children from 15 unrelated families who present with atypical muscular dystrophy and neurological defects. Nine hypomorphic SNUPN biallelic variants, predominantly clustered in the last coding exon, are ascertained to segregate with the disease. We demonstrate that mutant SPN1 failed to oligomerize leading to cytoplasmic aggregation in patients' primary fibroblasts and CRISPR/Cas9-mediated mutant cell lines. Additionally, mutant nuclei exhibit defective spliceosomal maturation and breakdown of Cajal bodies. Transcriptome analyses reveal splicing and mRNA expression dysregulation, particularly in sarcolemmal components, causing disruption of cytoskeletal organization in mutant cells and patient muscle tissues. Our findings establish SNUPN deficiency as the genetic etiology of a previously unrecognized subtype of muscular dystrophy and provide robust evidence of the role of SPN1 for muscle homeostasis.
Assuntos
Distrofias Musculares , Criança , Humanos , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , RNA/metabolismo , Splicing de RNA/genética , Spliceossomos/genética , Spliceossomos/metabolismoRESUMO
A stroke should be considered in cases of neurologic decompensation associated with inherited metabolic disorders. A resultant stroke could be a classical ischemic stroke (vascular stroke) or more commonly a "metabolic stroke." A metabolic stroke begins with metabolic dysfunctions, usually caused by a stressor, and leads to the rapid onset of prolonged central neurological deficits in the absence of vessel occlusion or rupture. The cardinal features of a metabolic stroke are stroke-like episodes without the confirmation of ischemia in the typical vascular territories, such as that seen in classic thrombotic or embolic strokes. Identifying the underlying cause of a metabolic stroke is essential for prompt and appropriate treatment. This study reviews the major inherited metabolic disorders that predispose patients to pediatric stroke, with an emphasis on the underlying mechanisms, types, and management.
RESUMO
DCBLD2 encodes discodin, CUB and LCCL domain-containing protein 2, a type-I transmembrane receptor that is involved in intracellular receptor signalling pathways and the regulation of cell growth. In this report, we describe a 5-year-old female who presented severe clinical features, including restrictive cardiomyopathy, developmental delay, spasticity and dysmorphic features. Trio-whole-exome sequencing and segregation analysis were performed to identify the genetic cause of the disease within the family. A novel homozygous nonsense variant in the DCBLD2 gene (c.80G > A, p.W27*) was identified as the most likely cause of the patient's phenotype. This nonsense variant falls in the extracellular N-terminus of DCBLD2 and thus might affect proper protein function of the transmembrane receptor. A number of in vitro investigations were performed on the proband's skin fibroblasts compared to normal fibroblasts, which allowed a comprehensive assessment resulting in the functional characterization of the identified DCBLD2 nonsense variant in different cellular processes. Our data propose a significant association between the identified variant and the observed reduction in cell proliferation, cell cycle progression, intracellular ROS, and Ca2 + levels, which would likely explain the phenotypic presentation of the patient as associated with lethal restrictive cardiomyopathy.
Assuntos
Anormalidades Múltiplas/genética , Cardiomiopatia Restritiva/genética , Códon sem Sentido , Deficiências do Desenvolvimento/genética , Predisposição Genética para Doença , Homozigoto , Proteínas de Membrana/genética , Anormalidades Múltiplas/diagnóstico , Alelos , Cálcio/metabolismo , Cardiomiopatia Restritiva/diagnóstico , Cardiomiopatia Restritiva/metabolismo , Ciclo Celular/genética , Pré-Escolar , Consanguinidade , Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/metabolismo , Fácies , Feminino , Estudos de Associação Genética/métodos , Genoma Mitocondrial , Genômica/métodos , Humanos , Angiografia por Ressonância Magnética , Fenótipo , Radiografia Torácica , Espécies Reativas de Oxigênio/metabolismo , Sequenciamento do ExomaRESUMO
Von Willebrand A domain-containing protein 8 (VWA8), also named KIAA0564, is a poorly characterized, mitochondrial matrix-targeted protein having a putative ATPase activity. VWA8 is comprising of ATPase-associated domains and a VWFA domain associated with ATPase activity inside the cell. In the present study, we describe a large consanguineous family of Saudi origin segregating a complex developmental syndrome in an autosomal recessive fashion. All the affected individuals exhibited severe developmental disorders. DNA from three patients was subjected to whole-exome sequencing followed by Sanger sequencing. VWA8 knock-down zebrafish morpholinos were used to study the phenotypic effect of this gene on zebrafish development. A homozygous missense variant [c.947A > G; p.(Asp316Gly)] was identified in exon 8 of the VWA8 gene, which perfectly segregated with the disease phenotype. Using zebrafish morpholino, we observed delayed development at an early stage, lack of movement, light sensitivity, severe skeletal deformity such as scoliosis, and facial dysmorphism. This is the first homozygous variant identified in the VWA8 gene underlying global developmental delay, microcephaly, scoliosis, limbs, and cardiovascular malformations in humans. We provide genetic and molecular evidence using zebrafish morpholino for a homozygous variant in the VWA8 gene, associated with such a complex developmental syndrome in humans.
RESUMO
BACKGROUND: Propionic acidemia (PA) and methylmalonic acidemia (MMA) are rare, autosomal recessive inborn errors of metabolism that require life-long medical treatment. The trial aimed to evaluate the effectiveness of the administration of carglumic acid with the standard treatment compared to the standard treatment alone in the management of these organic acidemias. METHODS: The study was a prospective, multicenter, randomized, parallel-group, open-label, controlled clinical trial. Patients aged ≤ 15 years with confirmed PA and MMA were included in the study. Patients were followed up for two years. The primary outcome was the number of emergency room (ER) admissions because of hyperammonemia. Secondary outcomes included plasma ammonia levels over time, time to the first episode of hyperammonemia, biomarkers, and differences in the duration of hospital stay. RESULTS: Thirty-eight patients were included in the study. On the primary efficacy endpoint, a mean of 6.31 ER admissions was observed for the carglumic acid arm, compared with 12.76 for standard treatment, with a significant difference between the groups (p = 0.0095). Of the secondary outcomes, the only significant differences were in glycine and free carnitine levels. CONCLUSION: Using carglumic acid in addition to standard treatment over the long term significantly reduces the number of ER admissions because of hyperammonemia in patients with PA and MMA.
Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Acidemia Propiônica , Erros Inatos do Metabolismo dos Aminoácidos/tratamento farmacológico , Glutamatos , Humanos , Ácido Metilmalônico , Acidemia Propiônica/tratamento farmacológico , Estudos ProspectivosRESUMO
Methylenetetrahydrofolate reductase deficiency; MTHFR (MIM 236250) is widely studied with more than 200 reported cases up to our knowledge from pediatrics to adult patients. Clinical presentation of MTHFR deficiency has a wide spectrum and its severity correlates with the degree of the enzyme activity. We report here seven pediatric cases with variable presentations including apnea at early infancy, in addition to hydrocephalus that needed drainage.
RESUMO
Background: Cystinuria is an inborn error of metabolism that manifests with renal stones due to defective renal epithelial cell transport of cystine which resulted from pathogenic variants in the SLC3A1 and/or SLC7A9 genes. Among nephrolithiasis diseases, cystinuria is potentially treatable, and further stone formation may be preventable. We report 23 patients who were identified biochemically and genetically to have cystinuria showing the diversity of the phenotype of cystinuria and expanding the genotype by identifying a broad spectrum of mutations. Patients and Methods: This is a multicenter retrospective chart review, where clinical and biochemical data, genetic analysis and the progress of the disease were documented over five years at two centers from 2014 to 2019. Results: Of 23 patients who were identified biochemically and/or genetically to have cystinuria, 14 (62%) were male. Thirteen patients were homozygous, and two were heterozygous for the SLC3A1 gene. Seven were homozygous and one was compound heterozygous for the SLC7A9 gene. We have detected 12 genetic variants including five novel variants. SLC3A1 gene variant c.1400 T > A (p.Met467Lys) is found in 38% of our cohort. Although 21 patients required surgical intervention, none developed ESRD. The number of stone episodes per year varied widely (median frequency of 0.45 stones/ per year, range between 0.06 and 78.2), with no significant difference in stone events per year between sexes (P = 0.73). Conclusion: Despite the high rate of consanguinity in Saudi Arabia, there was a broad spectrum of genetic variants. Most of our patients are homozygous recessive for SLC genes with multiple generations affected which indicates early screening and prevention of disease in these families. Phenotypic heterogeneity is well documented in our cohort even with the same genotype and the first stone episode age was variable but most commonly seen in the first decade of life.
RESUMO
UDP-glucose dehydrogenase (UGDH) encodes an oxidoreductase that converts two successive oxidations of UDP-glucose to produce UDP-glucuronic acid, a key component in the synthesis of several polysaccharides such as glycosaminoglycan and the disaccharide hyaluronic acid. UGDH is critical to the production of extracellular matrix components which are essential to the migration and connectivity of neurons early in human brain development. In this report, we describe one child of a consanguineous family who presented with distinct clinical features including global developmental delay, axial hypotonia, bilateral undescended testis, and subtle dysmorphic features. Whole genome sequencing and a segregation was performed to identify the genetic cause of the disease within the family. Though mutations in the UGDH protein have been described as causing developmental delay in various model organisms, to our knowledge, this is the first identification of the novel homozygous missense variant in exon8 of UGDH NM_003359.3: c.950 G>A (p.Arg317Gln) and most likely the cause of the patient's phenotype. This variant falls in an active region and replaces the highly conserved Arginine 317 residues across mammals.
RESUMO
OBJECTIVES: The selected combination was based on limited evidence clinically and in vitro on the efficacy of the Favipiravir and Hydroxychloroquine in SARS-CoV-2. The two medications were listed in many guidelines as treatment options and ongoing trials assessing their efficacy and safety. Thus, we want to prove the clinical effectiveness of the combination as therapy. TRIAL DESIGN: This is an Open label, multicenter, randomized controlled clinical trial to evaluate the safety and efficacy of novel therapeutic agents in hospitalized adults diagnosed with COVID-19. It is a multicenter trial that will compare Favipiravir plus Hydroxychloroquine combination (experimental arm) to a control arm. PARTICIPANTS: All study procedures will be conducted in eight centres in Saudia Arabia: King Abdulaziz Medical City National Guard Health Affairs in Riyadh. King Abdulaziz Hospital - Al Ahsa, Saudi Arabia AlMadina General Hospital, Madnia, Saudi Arabia Al-Qatif Central Hospital, Saudi Arabia Imam Abdulrahman Al Faisal Hospital, Dammam, Saudi Arabia King Abdulaziz Medical City, Jeddah, Saudi Arabia King Abdulaziz Hospital, Makkah, Saudi Arabia Imam Abdulrahman Alfaisal Hospital, Riyadh, Saudi Arabia Inclusion Criteria ⢠Should be at least 18 years of age, ⢠Male or nonpregnant female, ⢠Diagnosed with COVID-19 by PCR confirmed SARS-coV-2 viral infection. ⢠Able to sign the consent form and agree to clinical samples collection (or their legal surrogates if subjects are or become unable to make informed decisions).. ⢠Moderate or Severe COVID-19, defined as oxygen saturation (Sao2) of 94% or less while they were breathing ambient air or significant clinical symptoms that require hospital admission. ⢠patients had to be enrolled within 10 days of disease onset. Exclusion Criteria ⢠Patients who are pregnant or breastfeeding. ⢠Will be transferred to a non-study site hospital or discharged from hospital within 72 hours. ⢠Known sensitivity/allergy to hydroxychloroquine or Favipiravir ⢠Current use of hydroxychloroquine for another indication ⢠Prior diagnosis of retinopathy ⢠Prior diagnosis of glucose-6-phosphate dehydrogenase (G6PD) deficiency ⢠Major comorbidities increasing the risk of study drug including: i. Hematologic malignancy, ii. Advanced (stage 4-5) chronic kidney disease or dialysis therapy, iii. Known history of ventricular arrhythmias, iv. Current use of drugs that prolong the QT interval, Severe liver damage (Child-Pugh score ≥ C, AST> 5 times the upper limit), HIV. ⢠The investigator believes that participating in the trial is not in the best interests of the patient, or the investigator considers unsuitable for enrollment (such as unpredictable risks or subject compliance issues). ⢠Clinical prognostic non-survival, palliative care, or in deep coma and no have response to supportive treatment within three hours of admission ⢠Patient with irregular rhythm ⢠Patient with a history of heart attack (myocardial infarction) ⢠Patient with a family history of sudden death from heart attack before the age of 50 ⢠Take other drugs that can cause prolonged QT interval ⢠Patient who is receiving immunosuppressive therapy (cyclosporin) which cannot be switched to another agent or adjusted while using the investigational drug ⢠Gout/history of Gout or hyperuricemia (above the ULN), hereditary xanthinuria or xanthine calculi of the urinary tract. INTERVENTION AND COMPARATOR: The treatment intervention would be for a maximum of 10 days from randomization and it would be as follows: Favipiravir for 10 days: Administer 1800 mg (9 tablets) by mouth twice daily for one day, followed by 800mg (4 tablets) twice daily (total days of therapy is 10 days) Hydroxychloroquine for 5 days: (400mg) twice daily on day 1; for days 2-5 (200mg) twice daily. Reference Comparator Therapy: Standard of care is defined as: Treatment that is accepted by medical experts as a proper treatment for Covid-19 disease. Standard care comprised of, as necessary, supplemental oxygen, noninvasive and invasive ventilation, antibiotic agents, vasopressor support, renal-replacement therapy, extracorporeal membrane oxygenation (ECMO), and antiviral therapy except Favipiravir. Also, it may include intravenous fluids and medications for symptoms relief . MAIN OUTCOMES: The primary endpoint is the time to clinical improvement, defined as the time from randomization to an improvement of two points (from the status at randomization) on a seven-category ordinal scale or live discharge from the hospital, whichever came first (14 days from Randomization). RANDOMISATION: Eligible participants will be randomized in a 1:1 ratio to either the combination group (Favipiravir and Hydroxychloroquine) or a control group. The patients will be randomized utilizing Web based data entry System with a stratification based on the centre and the ICU admission. BLINDING (MASKING): This is an Open label study and only the analyst will be blinded during the study conduct. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): Under the classical two arm parallel design the total effective sample sizes needed is 472 subjects (236 subjects per group). TRIAL STATUS: Protocol version 3.1 (dated 11 Aug 2020), and currently recruitment is ongoing. The date recruitment started was May 21, 2020 and the investigators anticipate the trial will finish recruiting by the end of December 2020. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT04392973 , 19 May 2020 FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.
Assuntos
Amidas/uso terapêutico , Antivirais/uso terapêutico , Betacoronavirus/patogenicidade , Infecções por Coronavirus/tratamento farmacológico , Hidroxicloroquina/uso terapêutico , Pneumonia Viral/tratamento farmacológico , Pirazinas/uso terapêutico , Amidas/efeitos adversos , Antivirais/efeitos adversos , COVID-19 , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/virologia , Quimioterapia Combinada , Feminino , Interações Hospedeiro-Patógeno , Humanos , Hidroxicloroquina/efeitos adversos , Pacientes Internados , Masculino , Estudos Multicêntricos como Assunto , Pandemias , Pneumonia Viral/diagnóstico , Pneumonia Viral/virologia , Pirazinas/efeitos adversos , Ensaios Clínicos Controlados Aleatórios como Assunto , SARS-CoV-2 , Arábia Saudita , Fatores de Tempo , Resultado do Tratamento , Tratamento Farmacológico da COVID-19RESUMO
BACKGROUND: RAP1GDS1 (RAP1, GTP-GDP dissociation stimulator 1), also known as SmgGDS, is a guanine nucleotide exchange factor (GEF) that regulates small GTPases, including, RHOA, RAC1, and KRAS. RAP1GDS1 was shown to be highly expressed in different tissue types including the brain. However, mutations in the RAP1GDS1 gene associated with human diseases have not previously been reported. METHODS: We report on four affected individuals, presenting intellectual disability, global developmental delay (GDD), and hypotonia. The probands' DNA was subjected to whole-genome sequencing, revealing a homozygous splice acceptor site mutation in the RAP1GDS1 gene (1444-1G > A). Sanger sequencing was performed to confirm the segregation of the variant in two Saudi families. The possible aberrant splicing in the patients' RNA was investigated using RT-PCR and changes in mRNA expression of the patients were confirmed using qRT-PCR. RESULTS: The identified splice variant was found to segregate within the two families. RT-PCR showed that the mutation affected RAP1GDS1 gene splicing, resulting in the production of aberrant transcripts in the affected individuals. Quantitative gene expression analysis demonstrated that the RAP1GDS1 mRNA expression in all the probands was significantly decreased compared to that of the control, and Sanger sequencing of the probands' cDNA revealed skipping of exon 13, further strengthening the pathogenicity of this variant. CONCLUSION: We are the first to report the mutation of the RAP1GDS1 gene as a potential cause of GDD and hypotonia. However, further investigations into the molecular mechanisms involved are required to confirm the role of RAP1GDS1 gene in causing GDD and hypotonia.
Assuntos
Anormalidades Craniofaciais/genética , Deficiências do Desenvolvimento/genética , Deficiência Intelectual/genética , Transtornos do Desenvolvimento da Linguagem/genética , Adulto , Pré-Escolar , Consanguinidade , Fatores de Troca do Nucleotídeo Guanina , Humanos , Masculino , Mutação , Linhagem , Síndrome , Sequenciamento Completo do GenomaRESUMO
BACKGROUND Krabbe disease, or globoid cell leukodystrophy, is an autosomal recessive disease caused by the deficiency of lysosomal galactocerebrosidase. The most common form is infantile Krabbe disease, which is usually diagnosed within the first year of life and has high morbidity and mortality. Patients usually present with irritability, progressive neurodegeneration, spasticity, and peripheral neuropathy. This report is of a 6-year-old girl who had Krabbe disease since she was 5 weeks of age. CASE REPORT A 6-year-old female Saudi patient had initially presented at 5 weeks of age with hypoventilation, recurrent attacks of fever, and failure to thrive. The patient also skin hypopigmentation involving the face, neck, upper extremities, and lower extremities. Peripheral blood galactocerebrosidase enzyme activity was normal but was reduced in tissue fibroblasts. Whole exome sequencing (WES) and whole genome sequencing (WGS) showed a homozygous mutation in the GALC gene c.334A>G (p.Thr112Ala), which was previously reported in a compound heterozygous state with another mutation. CONCLUSIONS This case report describes a patient with homozygous mutation status Krabbe disease. Although this patient had the phenotype of early infantile-onset Krabbe disease, which usually has high morbidity and mortality, her condition is now relatively stable at 6 years of age, which could be due to relatively higher enzyme activity. This case also expanded the presentation or typical phenotype of infantile Krabbe disease as the patient also presented with hypoventilation and skin hypopigmentation.
Assuntos
Hipopigmentação/etiologia , Hipoventilação/etiologia , Leucodistrofia de Células Globoides/diagnóstico , Criança , Feminino , Galactosilceramidase/genética , Homozigoto , Humanos , Leucodistrofia de Células Globoides/genética , Mutação , Fenótipo , Arábia SauditaRESUMO
Skeletal development throughout the embryonic and postnatal phases is a dynamic process, based on bone remodeling and the balance between the activities of osteoclasts and osteoblasts modulating skeletal homeostasis. The Notch signaling pathway is a regulator of several developmental processes, and plays a crucial role in the development of the human skeleton by regulating the proliferation and differentiation of skeletal cells. The Delta Like-1 (DLL1) gene plays an important role in Notch signaling. We propose that an identified alteration in DLL1 protein may affect the downstream signaling. In this article, we present for the first time two siblings with a mutation in the DLL1 gene, presenting with congenital vertebral malformation. Using variable in silico prediction tools, it was predicted that the variant was responsible for the development of disease. Quantitative reverse-transcription polymerase chain reaction (PCR) for the Notch signaling pathway, using samples obtained from patients, showed a significant alteration in the expression of various related genes. Specifically, the expression of neurogenic locus notch homolog protein 1, SNW domain-containing protein 1, disintegrin, and metalloproteinase domain-containing proteins 10 and 17, was upregulated. In contrast, the expression of HEY1, HEY2, adenosine deaminase (ADA), and mastermind-like-1 (MAML-1) was downregulated. Furthermore, in a phosphokinase array, four kinases were significantly changed in patients, namely, p27, JANK1/2/3, mitogen- and stress-activated protein kinases 1 and 2, and focal adhesion kinase. Our results suggest an implication of a DLL1 defect related to the Notch signaling pathway, at least in part, in the morphologic abnormality observed in these patients. A limitation of our study was the low number of patients and samples. Further studies in this area are warranted to decipher the link between a DLL1 defect and skeletal abnormality.