Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Lasers Med Sci ; 37(8): 3193-3201, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35727394

RESUMO

This study was conducted to investigate the inhibitory effects of light-emitting diodes (LEDs) on exosome biogenesis and angiogenesis capacity in Ishikawa endometrial cancer cells. To this end, cells were exposed to different energy densities (fluences) of 4, 8, 16, 32, and 64 J/cm2 for 5 days (once every 24 h), and cell viability was determined using an MTT assay. Based on data from the MTT panel, cells were exposed to 4 and 16 J/cm2 for subsequent analyses. Exosome biogenesis was also monitored via monitoring the expression of CD63, ALIX, and Rab27a and b. The size and morphology of exosomes in the supernatant were measured using scanning electron microscopy (SEM), and dynamic light scattering (DLS). Using Transwell insert, the migration capacity of these cells was studied. The angiogenic effects of irradiated Ishikawa cell secretome at different fluences were monitored on human endothelial cells using in vitro tubulogenesis. Results indicated LED can reduce the viability of Ishikawa cells in a dose-dependent manner. According to our data, 4 and 64 J/cm2 groups exhibited minimum and maximum cytotoxic effects compared to the control cells. Data revealed a close proportional relationship between the power of laser and exosome average size compared to the non-treated control cells (p < 0.05). Real-time PCR analysis showed the suppression of Rab27b and up-regulation of Rab27a in irradiated cells exposed to 4 and 16 J/cm2 (p < 0.05). These effects were evident in the 16 J/cm2 group. Likewise, LED can inhibit the migration of Ishikawa cells in a dose-dependent manner (p < 0.05). Tubulogenesis activity of endothelial cells was suppressed after incubation with the secretome of irradiated Ishikawa cells (p < 0.05). These data showed tumoricidal properties of LED irradiation on human adenocarcinoma Ishikawa cells via the inhibition of exosome biogenesis and suppression of angiogenesis capacity.


Assuntos
Adenocarcinoma , Exossomos , Sobrevivência Celular/efeitos da radiação , Células Endoteliais , Exossomos/metabolismo , Feminino , Humanos , Regulação para Cima
2.
BMC Res Notes ; 15(1): 346, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36348463

RESUMO

OBJECTIVE: Recently, the decellularization technique is introduced as one of the tissue engineering procedures for the treatment of various deficiencies. Here, we aimed to assess the dynamic activity of CCs and HUVECs within decellularized bovine ovarian tissue transplanted subcutaneously in rats. Ovarian tissue was decellularized using a cocktail consisting of different chemicals, and the efficiency of decellularization was assessed using hematoxylin-eosin and DAPI staining. The cell survival was evaluated using an LDH leakage assay. Thereafter, decellularized samples were recellularized using HUVECs and CCs, encapsulated inside alginate (1.2%)-gelatin, (1%) hydrogel, and transplanted subcutaneously to rats. The existence of CD31- and estrogen-positive cells was assessed using immunohistochemistry staining. RESULTS: Bright-field imaging and DAPI staining revealed the lack of nuclei with naive matrix structure in ovarian tissue subjected to decellularization protocol. SEM imaging revealed a normal matrix in decellularized ovaries. LDH assay showed a lack of cytotoxicity for CCs after 7-days compared to the control group. Immunohistochemistry staining showed both CD31- and estrogen-positive cells in CCs + HUVECs compared to the CCs group. CD31 cells appeared with flattened morphology aligned with matrix fibers. The existence of estrogen and CD31 positive cells showed the efficiency of decellularized ovarian tissue to restore cellular function and activity.


Assuntos
Células Endoteliais , Matriz Extracelular , Feminino , Ratos , Bovinos , Animais , Engenharia Tecidual/métodos , Ovário , Estrogênios
3.
Cardiovasc Toxicol ; 21(7): 582-591, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33856644

RESUMO

It has been shown that near all organs, especially the cardiovascular system, are affected by bacterial lipopolysaccharide via the activation of Toll-like receptor signaling pathways. Here, we tried to find the blunting effect of bacterial lipase on lipopolysaccharide (LPS)-induced cardiac tissue toxicity in chicken embryos. 7-day fertilized chicken eggs were divided randomly into different groups as follows; Control, Normal Saline, LPS (0.1, 0.5 and 1 mg/kbw), and LPS (0.1, 0.5 and 1 mg/kbw) plus 5 mg/ml Lipase. On day 17, the hearts were sampled. The expression of genes such as GATA4, NKX2.5, EGFR, TRIF, and NF-ƙB was monitored using real-time PCR analysis. Using western blotting, we measured NF-ƙB protein level. Total antioxidant capacity, glutathione peroxidase, and Catalase activity were also studied. Microvascular density and anterior wall thickness were monitored in histological samples using H&E staining. High dose of LPS (1 mg/kbw) increased the expression of TRIF but not NF-ƙB compared to the control group (p < 0.05). We found a statistically significant reduction in groups that received LPS + Lipase compared to the control and LPS groups (p < 0.05). Western blotting revealed that the injection of Lipase could reduce LPS-induced NF-ƙB compared to the control group (p < 0.05). The expression of GATA4, NKx2.5, and EGFR was not altered in the LPS group, while the simultaneous application of LPS and Lipase significantly reduced GATA4, NKx2.5, and EGFR levels below the control (p < 0.05). We found non-significant differences in glutathione peroxidase, and Catalase activity in all groups (p > 0.05), while total antioxidant capacity was increased in groups that received LPS + Lipase. Anterior wall thickness was diminished in LPS groups and the use of both lipase and LPS returned near-to-control values (p < 0.05). Despite a slight increase in microvascular density, we found statistically non-significant differences in all groups (p > 0.05). Bacterial lipase reduces detrimental effects of LPS on chicken embryo heart induced via Toll-like receptor signaling pathway.


Assuntos
Proteínas de Bactérias/farmacologia , Coração/efeitos dos fármacos , Lipase/farmacologia , Lipopolissacarídeos/toxicidade , Receptores Toll-Like/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Burkholderia cepacia/enzimologia , Embrião de Galinha , Receptores ErbB/genética , Receptores ErbB/metabolismo , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA4/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Coração/embriologia , Proteína Homeobox Nkx-2.5/genética , Proteína Homeobox Nkx-2.5/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa