Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Annu Rev Physiol ; 82: 177-202, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-31738670

RESUMO

Endocrine disrupting chemicals are common in our environment and act on hormone systems and signaling pathways to alter physiological homeostasis. Gestational exposure can disrupt developmental programs, permanently altering tissues with impacts lasting into adulthood. The brain is a critical target for developmental endocrine disruption, resulting in altered neuroendocrine control of hormonal signaling, altered neurotransmitter control of nervous system function, and fundamental changes in behaviors such as learning, memory, and social interactions. Human cohort studies reveal correlations between maternal/fetal exposure to endocrine disruptors and incidence of neurodevelopmental disorders. Here, we summarize the major literature findings of endocrine disruption of neurodevelopment and concomitant changes in behavior by four major endocrine disruptor classes:bisphenol A, polychlorinated biphenyls, organophosphates, and polybrominated diphenyl ethers. We specifically review studies of gestational and/or lactational exposure to understand the effects of early life exposure to these compounds and summarize animal studies that help explain human correlative data.


Assuntos
Comportamento/efeitos dos fármacos , Disruptores Endócrinos/efeitos adversos , Sistema Nervoso/crescimento & desenvolvimento , Efeitos Tardios da Exposição Pré-Natal/patologia , Adulto , Animais , Comportamento Animal/efeitos dos fármacos , Compostos Benzidrílicos/efeitos adversos , Feminino , Humanos , Sistema Nervoso/efeitos dos fármacos , Fenóis/efeitos adversos , Bifenil Polibromatos/efeitos adversos , Bifenilos Policlorados/efeitos adversos , Gravidez
2.
J Neuroinflammation ; 17(1): 146, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32375817

RESUMO

BACKGROUND: Although historically microglia were thought to be immature in the fetal brain, evidence of purposeful interactions between these immune cells and nearby neural progenitors is becoming established. Here, we examined the influence of embryonic microglia on gliogenesis within the developing tuberal hypothalamus, a region later important for energy balance, reproduction, and thermoregulation. METHODS: We used immunohistochemistry to quantify the location and numbers of glial cells in the embryonic brain (E13.5-E17.5), as well as a pharmacological approach (i.e., PLX5622) to knock down fetal microglia. We also conducted cytokine and chemokine analyses on embryonic brains in the presence or absence of microglia, and a neurosphere assay to test the effects of the altered cytokines on hypothalamic progenitor behaviors. RESULTS: We identified a subpopulation of activated microglia that congregated adjacent to the third ventricle alongside embryonic Olig2+ neural progenitor cells (NPCs) that are destined to give rise to oligodendrocyte and astrocyte populations. In the absence of microglia, we observed an increase in Olig2+ glial progenitor cells that remained at the ventricle by E17.5 and a concomitant decrease of these Olig2+ cells in the mantle zone, indicative of a delay in migration of these precursor cells. A further examination of maturing oligodendrocytes in the hypothalamic grey and white matter area in the absence of microglia revealed migrating oligodendrocyte progenitor cells (OPCs) within the grey matter at E17.5, a time point when OPCs begin to slow their migration. Finally, quantification of cytokine and chemokine signaling in ex vivo E15.5 hypothalamic cultures +/- microglia revealed decreases in the protein levels of several cytokines in the absence of microglia. We assayed the influence of two downregulated cytokines (CCL2 and CXCL10) on neurosphere-forming capacity and lineage commitment of hypothalamic NPCs in culture and showed an increase in NPC proliferation as well as neuronal and oligodendrocyte differentiation. CONCLUSION: These data demonstrate that microglia influence gliogenesis in the developing tuberal hypothalamus.


Assuntos
Astrócitos/citologia , Hipotálamo/citologia , Hipotálamo/embriologia , Microglia/citologia , Oligodendroglia/citologia , Animais , Diferenciação Celular/fisiologia , Camundongos , Células-Tronco Neurais/citologia
3.
Horm Behav ; 101: 50-58, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29241697

RESUMO

Bisphenol A (BPA) is among the best-studied endocrine disrupting chemicals, known to act via multiple steroid hormone receptors to mediate a myriad of cellular effects. Pre-, peri-, and postnatal BPA exposure have been linked to a variety of altered behaviors in multiple model organisms, ranging from zebrafish to frogs to mammalian models. Given that BPA can cross the human placental barrier and has been found in the serum of human fetuses during gestation, BPA has been postulated to adversely affect ongoing neurodevelopment, ultimately leading to behavioral disorders later in life. Indeed, the brain has been identified as a key developmental target for BPA disruption. Despite these known associations between gestational BPA exposure and adverse developmental outcomes, as well as an extensive body of evidence existing in the literature, the mechanisms by which BPA induces its cellular- and tissue-specific effects on neurodevelopmental processes still remains poorly understood at a mechanistic level. In this review we will briefly summarize the effects of gestational BPA exposure on neural developmental mechanisms and resulting behaviors, and then present suggestions for how we might address gaps in our knowledge to develop a fuller understanding of endocrine neurodevelopmental disruption to better inform governmental policy against the use of BPA or other endocrine disruptors.


Assuntos
Compostos Benzidrílicos/toxicidade , Encéfalo/efeitos dos fármacos , Encéfalo/embriologia , Disruptores Endócrinos/toxicidade , Neurogênese/efeitos dos fármacos , Fenóis/toxicidade , Animais , Anuros , Compostos Benzidrílicos/farmacologia , Disruptores Endócrinos/farmacologia , Feminino , Humanos , Transtornos Mentais/induzido quimicamente , Fenóis/farmacologia , Gravidez , Peixe-Zebra
4.
Biochim Biophys Acta ; 1861(7): 594-605, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27090939

RESUMO

Non-alcoholic steatohepatitis (NASH), is the form of non-alcoholic fatty liver disease posing risk to progress into serious long term complications. Human and pre-clinical models implicate cellular cholesterol dysregulation playing important role in its development. Mouse model studies suggest synergism between dietary cholesterol and fat in contributing to NASH but the mechanisms remain poorly understood. Our laboratory previously reported the primary importance of hepatic endoplasmic reticulum cholesterol (ER-Chol) in regulating hepatic ER stress by comparing the responses of wild type, Ldlr-/-xLcat+/+ and Ldlr-/-xLcat-/- mice, to a 2% high cholesterol diet (HCD). Here we further investigated the roles of ER-Chol and ER stress in HFHS diet-induced NASH using the same strains. With HFHS diet feeding, both WT and Ldlr-/-xLcat+/+ accumulate ER-Chol in association with ER stress and inflammasome activation but the Ldlr-/-xLcat-/- mice are protected. By contrast, all three strains accumulate cholesterol crystal, in correlation with ER-Chol, albeit less so in Ldlr-/-xLcat-/- mice. By comparison, HCD feeding per se (i) is sufficient to promote steatosis and activate inflammasomes, and (ii) results in dramatic accumulation of cholesterol crystal which is linked to inflammasome activation in Ldlr-/-xLcat-/- mice, independent of ER-Chol. Our data suggest that both dietary fat and cholesterol each independently promote steatosis, cholesterol crystal accumulation and inflammasome activation through distinct but complementary pathways. In vitro studies using palmitate-induced hepatic steatosis in HepG2 cells confirm the key roles by cellular cholesterol in the induction of steatosis and inflammasome activations. These novel findings provide opportunities for exploring a cellular cholesterol-focused strategy for treatment of NASH.


Assuntos
Colesterol na Dieta/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Fosfatidilcolina-Esterol O-Aciltransferase/genética , Receptores de LDL/genética , Animais , Colesterol na Dieta/efeitos adversos , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/genética , Feminino , Regulação da Expressão Gênica , Células Hep G2 , Humanos , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Deficiência da Lecitina Colesterol Aciltransferase/genética , Deficiência da Lecitina Colesterol Aciltransferase/metabolismo , Metabolismo dos Lipídeos/genética , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Oxirredução , Ácido Palmítico/farmacologia , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Receptores de LDL/deficiência , Transdução de Sinais
5.
J Biol Chem ; 290(51): 30514-29, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26494623

RESUMO

Our laboratory previously reported that lecithin:cholesterol acyltransferase (LCAT) and LDL receptor double knock-out mice (Ldlr(-/-)xLcat(-/-) or DKO) spontaneously develop functioning ectopic brown adipose tissue (BAT) in skeletal muscle, putatively contributing to protection from the diet-induced obesity phenotype. Here we further investigated their developmental origin and the mechanistic role of LCAT deficiency. Gene profiling of skeletal muscle in DKO newborns and adults revealed a classical lineage. Primary quiescent satellite cells (SC) from chow-fed DKO mice, not in Ldlr(-/-)xLcat(+/+) single-knock-out (SKO) or C57BL/6 wild type, were found to (i) express exclusively classical BAT-selective genes, (ii) be primed to express key functional BAT genes, and (iii) exhibit markedly increased ex vivo adipogenic differentiation into brown adipocytes. This gene priming effect was abrogated upon feeding the mice a 2% high cholesterol diet in association with accumulation of excess intracellular cholesterol. Ex vivo cholesterol loading of chow-fed DKO SC recapitulated the effect, indicating that cellular cholesterol is a key regulator of SC-to-BAT differentiation. Comparing adipogenicity of Ldlr(+/+)xLcat(-/-) (LCAT-KO) SC with DKO SC identified a role for LCAT deficiency in priming SC to express BAT genes. Additionally, we found that reduced cellular cholesterol is important for adipogenic differentiation, evidenced by increased induction of adipogenesis in cholesterol-depleted SC from both LCAT-KO and SKO mice. Taken together, we conclude that ectopic BAT in DKO mice is classical in origin, and its development begins in utero. We further showed complementary roles of LCAT deficiency and cellular cholesterol reduction in the SC-to-BAT adipogenesis.


Assuntos
Adipócitos Marrons/metabolismo , Adipogenia , Diferenciação Celular , Colesterol/metabolismo , Deficiência da Lecitina Colesterol Aciltransferase/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Adipócitos Marrons/patologia , Animais , Colesterol/genética , Deficiência da Lecitina Colesterol Aciltransferase/genética , Deficiência da Lecitina Colesterol Aciltransferase/patologia , Camundongos , Camundongos Knockout , Células Satélites de Músculo Esquelético/patologia
6.
Crit Rev Clin Lab Sci ; 51(6): 321-31, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25115413

RESUMO

In recent years, the high-density lipoprotein (HDL) hypothesis has been challenged. Several completed randomized clinical trials continue to fall short in demonstrating HDL, or at least HDL-cholesterol (HDL-C) levels, as being a consistent target in the prevention of cardiovascular diseases. However, population studies and findings in lipid modifying trials continue to strongly support HDL-C as a superb risk predictor. It is increasingly evident that the complexity of HDL metabolism confounds the use of HDL-C concentration as a unified target. However, important insights continue to emerge from the post hoc analyses of recently completed (i) fibrate-based FIELD and ACCORD trials, including the unexpected beneficial effect of fibrates in microvascular diseases, (ii) the niacin-based AIM-HIGH and HPS2-THRIVE studies, (iii) recombinant HDL-based as well as (iv) the completed CETP inhibitor-based trials. These together with on-going mechanistic studies on novel pathways, which include the unique roles of microRNAs, post-translational remodeling of HDL and novel pathways related to HDL modulators will provide valuable insights to guide how best to refocus and redesign the conceptual framework for selecting HDL-based targets.


Assuntos
HDL-Colesterol , Hipolipemiantes , MicroRNAs , Doenças Cardiovasculares , Ácidos Fíbricos , Humanos , Hiperlipidemias , Niacina
7.
Sci Rep ; 14(1): 16082, 2024 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-38992091

RESUMO

Regulation of physiological homeostasis, including energy balance, is thought to be modified by low levels of adult neurogenesis in the hypothalamus. Hormones such as oestradiol can influence both embryonic and adult hypothalamic neurogenic programs, demonstrating a sensitivity of hypothalamic neural progenitor cells to endogenous hormones. Previously we showed that gestational exposure to environmental levels of the xenoestrogen bisphenol A (BPA) changed neural progenitor cell behaviors in the embryo; however, we did not examine if these changes were permanent to affect adult neurogenesis. Here we investigated whether adult neuro- and/or gliogenesis were altered in mice prenatally exposed to BPA and placed on a high-fat diet challenge. Gestationally exposed adult female mice on a standard diet gained less weight than non-BPA controls, whereas gestationally exposed BPA females on a high-fat diet gained more weight than controls. Males exposed to gestational BPA showed no differences in weight gain relative to control males. Concomitantly, adult neurogenesis was increased in the VMH, DMH, and PVN of adult female mice exposed to BPA on standard diet, suggesting that disrupted adult neurogenesis might perturb normal energy balance regulation in females. These results add to growing evidence that low-dose BPA exposure in utero causes changes to adult hypothalamic function.


Assuntos
Compostos Benzidrílicos , Metabolismo Energético , Homeostase , Hipotálamo , Neurogênese , Fenóis , Efeitos Tardios da Exposição Pré-Natal , Animais , Compostos Benzidrílicos/toxicidade , Feminino , Fenóis/toxicidade , Neurogênese/efeitos dos fármacos , Gravidez , Camundongos , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Homeostase/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Masculino , Dieta Hiperlipídica/efeitos adversos
8.
Gen Comp Endocrinol ; 181: 35-44, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23103788

RESUMO

The vertebrate corticosteroid stress response is highly conserved and a key function is to restore homeostasis by mobilizing and reallocating energy stores. This process is primarily initiated by activation of the hypothalamus-pituitary-adrenal axis, leading to the release of corticosteroids into the circulation. In teleosts, cortisol is the primary corticosteroid that is released into the circulation in response to stress. This steroid activates corticosteroid receptors that are ligand-bound transcription factors, modulating downstream gene expression in target tissues. Recent research in zebrafish (Danio rerio) has identified novel roles for cortisol in early developmental processes, including organogenesis and mesoderm formation. As cortisol biosynthesis commences only around the time of hatch in teleosts, the early developmental events are orchestrated by cortisol that is maternally deposited prior to fertilization. This review will highlight the molecular events leading to the development of the corticosteroid stress axis, and the possible role of cortisol in the developmental programming of stress axis function. Use of zebrafish as a model may lead to significant insights into the conserved role of glucocorticoids during early development with potential implications in biomedical research, including fetal stress syndromes in humans.


Assuntos
Glucocorticoides/sangue , Glucocorticoides/metabolismo , Animais , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Feminino , Hidrocortisona/sangue , Transdução de Sinais/fisiologia , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia , Peixe-Zebra
9.
Sci Adv ; 7(22)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34049886

RESUMO

Critical physiological processes such as sleep and stress that underscore health are regulated by an intimate interplay between the endocrine and nervous systems. Here, we asked how fetal exposure to the endocrine disruptor found in common plastics, bisphenol A (BPA), causes lasting effects on adult animal behaviors. Adult mice exposed to low-dose BPA during gestation displayed notable disruption in circadian activity, social interactions, and associated neural hyperactivity, with some phenotypes maintained transgenerationally. Gestational BPA exposure increased vasopressin+ neurons in the suprachiasmatic nucleus (SCN), the region that regulates circadian rhythms, of F1 and F3 generations. Mechanistically, BPA increased proliferation of hypothalamic neural progenitors ex vivo and caused precocious neurogenesis in vivo. Co-antagonism of both estrogen and androgen receptors was necessary to block BPA's effects on hypothalamic neural progenitors, illustrating a dual role for these endocrine targets. Together, gestational BPA exposure affects development of circadian centers, with lasting consequences across generations.


Assuntos
Compostos Benzidrílicos , Fenóis , Animais , Compostos Benzidrílicos/toxicidade , Camundongos , Neurogênese , Fenóis/toxicidade , Núcleo Supraquiasmático
11.
Endocrinology ; 161(4)2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32154873

RESUMO

The hypothalamus is a key homeostatic brain region and the primary effector of neuroendocrine signaling. Recent studies show that early embryonic developmental disruption of this region can lead to neuroendocrine conditions later in life, suggesting that hypothalamic progenitors might be sensitive to exogenous challenges. To study the behavior of hypothalamic neural progenitors, we developed a novel dissection methodology to isolate murine hypothalamic neural stem and progenitor cells at the early timepoint of embryonic day 12.5, which coincides with peak hypothalamic neurogenesis. Additionally, we established and optimized a culturing protocol to maintain multipotent hypothalamic neurospheres that are capable of sustained proliferation or differentiation into neurons, oligodendrocytes, and astrocytes. We characterized media requirements, appropriate cell seeding density, and the role of growth factors and sonic hedgehog (Shh) supplementation. Finally, we validated the use of fluorescence activated cell sorting of either Sox2GFPKI or Nkx2.1GFPKI transgenic mice as an alternate cellular isolation approach to enable enriched selection of hypothalamic progenitors for growth into neurospheres. Combined, we present a new technique that yields reliable culturing of hypothalamic neural stem and progenitor cells that can be used to study hypothalamic development in a controlled environment.


Assuntos
Técnicas de Cultura de Células/métodos , Hipotálamo/citologia , Células-Tronco Neurais/citologia , Neuroglia/citologia , Neurônios/citologia , Animais , Meios de Cultura , Camundongos , Camundongos Transgênicos , Neurogênese/fisiologia
12.
Mol Cell Endocrinol ; 438: 3-17, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27720896

RESUMO

The hypothalamus is a critical regulator of body homeostasis, influencing the autonomic nervous system and releasing trophic hormones to modulate the endocrine system. The developmental mechanisms that govern formation of the mature hypothalamus are becoming increasingly understood as research in this area grows, leading us to gain appreciation for how these developmental programs are susceptible to disruption by maternal exposure to endocrine disrupting chemicals or other environmental factors in utero. These vulnerabilities, combined with the prominent roles of the various hypothalamic nuclei in regulating appetite, reproductive behaviour, mood, and other physiologies, create a window whereby early developmental disruption can have potent long-term effects. Here we broadly outline our current understanding of hypothalamic development, with a particular focus on the tuberal hypothalamus, including what is know about nuclear coalescing and maturation. We finish by discussing how exposure to environmental or maternally-derived factors can perhaps disrupt these hypothalamic developmental programs, and potentially lead to neuroendocrine disease states.


Assuntos
Poluentes Ambientais/toxicidade , Hipotálamo/embriologia , Animais , Desenvolvimento Embrionário/genética , Humanos , Hipotálamo/efeitos dos fármacos , Sistemas Neurossecretores/efeitos dos fármacos , Sistemas Neurossecretores/patologia
13.
Sci Rep ; 6: 22582, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26940285

RESUMO

In zebrafish (Danio rerio), de novo synthesis of cortisol in response to stressor exposure commences only after hatch. Maternally deposited cortisol is present during embryogenesis, but a role for this steroid in early development is unclear. We tested the hypothesis that maternal cortisol is essential for the proper development of hypothalamus-pituitary-interrenal (HPI) axis activity and the onset of the stressor-induced cortisol response in larval zebrafish. In this study, zygotic cortisol content was manipulated by microinjecting antibody to sequester this steroid, thereby making it unavailable during embryogenesis. This was compared with embryos containing excess cortisol by microinjection of exogenous steroid. The resulting larval phenotypes revealed distinct treatment effects, including deformed mesoderm structures when maternal cortisol was unavailable and cardiac edema after excess cortisol. Maternal cortisol unavailability heightened the cortisol stress response in post-hatch larvae, whereas excess cortisol abolished the stressor-mediated cortisol elevation. This contrasting hormonal response corresponded with altered expression of key HPI axis genes, including crf, 11B hydroxylase, pomca, and star, which were upregulated in response to reduced cortisol availability and downregulated when embryos had excess cortisol. These findings for the first time underscore a critical role for maternally deposited cortisol in programming HPI axis development and function in zebrafish.


Assuntos
Desenvolvimento Embrionário , Hidrocortisona/fisiologia , Sistema Hipotálamo-Hipofisário/fisiologia , Rim/fisiologia , Troca Materno-Fetal , Sistema Hipófise-Suprarrenal/fisiologia , Peixe-Zebra/fisiologia , Animais , Embrião não Mamífero , Feminino , Larva , Gravidez , Estresse Fisiológico
14.
PLoS One ; 8(11): e80726, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24348914

RESUMO

Cortisol is the primary corticosteroid in teleosts that is released in response to stressor activation of the hypothalamus-pituitary-interrenal axis. The target tissue action of this hormone is primarily mediated by the intracellular glucocorticoid receptor (GR), a ligand-bound transcription factor. In developing zebrafish (Danio rerio) embryos, GR transcripts and cortisol are maternally deposited into the oocyte prior to fertilization and influence early embryogenesis. To better understand of the molecular mechanisms involved, we investigated changes in the developmental transcriptome prior to hatch, in response to morpholino oligonucleotide knockdown of GR using the Agilent zebrafish microarray platform. A total of 1313 and 836 mRNA transcripts were significantly changed at 24 and 36 hours post fertilization (hpf), respectively. Functional analysis revealed numerous developmental processes under GR regulation, including neurogenesis, eye development, skeletal and cardiac muscle formation. Together, this study underscores a critical role for glucocorticoid signaling in programming molecular events essential for zebrafish development.


Assuntos
Receptores de Glucocorticoides/genética , Transcriptoma/genética , Animais , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , RNA Mensageiro/genética , Peixe-Zebra
15.
Mol Cell Endocrinol ; 363(1-2): 85-91, 2012 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-22842336

RESUMO

In zebrafish (Danio rerio), de novo cortisol synthesis commences only after hatching, providing an interesting model to study the effects of maternal stress and abnormal cortisol deposition on embryo development and performance. We hypothesized that elevated cortisol levels during pre-hatch embryogenesis compromise cardiac performance in developing zebrafish. Cortisol was microinjected into one-cell embryos to elevate basal cortisol levels during embryogenesis. Elevated embryo cortisol content increased heart deformities, including pericardial edema and malformed chambers, and lowered resting heartbeat post-hatch. This phenotype coincided with suppression of key cardiac genes, including nkx2.5, cardiac myosin light chain 1, cardiac troponin type T2A, and calcium transporting ATPase, underpinning a mechanistic link to heart malformation. The attenuation of the heartbeat response to a secondary stressor post-hatch also confirms a functional reduction in cardiac performance. Altogether, high cortisol content during embryogenesis, mimicking increased deposition due to maternal stress, decreases cardiac performance and may reduce zebrafish offspring survival.


Assuntos
Cardiopatias Congênitas/metabolismo , Coração/embriologia , Hidrocortisona/fisiologia , Estresse Fisiológico , Animais , Embrião não Mamífero/metabolismo , Embrião não Mamífero/fisiopatologia , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Coração/fisiopatologia , Cardiopatias Congênitas/etiologia , Cardiopatias Congênitas/fisiopatologia , Frequência Cardíaca , Hidrocortisona/farmacologia , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Microinjeções , Morfogênese , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
16.
Mol Cell Endocrinol ; 364(1-2): 113-25, 2012 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-22963886

RESUMO

Unlike other freshwater fish previously examined, zebrafish are capable of increasing their rate of Na(+) uptake during chronic exposure to acidic water (pH 4). In the present study, the potential role of cortisol in the induction of Na(+) uptake during acid-exposure was investigated. When zebrafish larvae (4 days post-fertilization) were treated with waterborne cortisol, the rate of Na(+) uptake was significantly increased; this effect was blocked by co-incubating larvae with RU-486, an antagonist selective for the glucocorticoid receptor (GR). A similar induction in Na(+) uptake, which was also blocked by RU-486, was observed when larvae were treated with dexamethasone, a selective GR agonist. Conversely, treating larvae with aldosterone, a selective agonist for the mineralocorticoid receptor (MR) had no effect on Na(+) uptake. Acid-exposure increased whole body cortisol levels and translational knockdown of GR using antisense morpholinos prevented the full induction of Na(+) uptake during exposure to acidic water, further confirming the role of cortisol and GR in Na(+) uptake stimulation. Using immunohistochemistry, GR was localized to ionocytes known to be responsible for Na(+) uptake (HR-cells). Knockdown of Rhcg1, an apical membrane ammonia channel or Na(+)/H(+) exchanger 3b (NHE3b), proteins known to play an important role in facilitating Na(+) uptake in acidic water, prevented the stimulatory effects of cortisol treatment on Na(+) uptake, suggesting that cortisol regulates Na(+) uptake by stimulating an Rhcg1-NHE3b "functional metabolon".


Assuntos
Anti-Inflamatórios/farmacologia , Proteínas de Transporte de Cátions/metabolismo , Hidrocortisona/farmacologia , Receptores de Glucocorticoides/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Sódio/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/fisiologia , Aclimatação , Aldosterona/farmacologia , Amônia/farmacologia , Animais , Proteínas de Transporte de Cátions/antagonistas & inibidores , Dexametasona/farmacologia , Antagonistas de Hormônios/farmacologia , Concentração de Íons de Hidrogênio , Transporte de Íons/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/fisiologia , Mifepristona/farmacologia , RNA Interferente Pequeno/genética , Receptores de Glucocorticoides/agonistas , Receptores de Glucocorticoides/antagonistas & inibidores , Receptores de Mineralocorticoides/agonistas , Receptores de Mineralocorticoides/metabolismo , Trocador 3 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/antagonistas & inibidores , Proteínas de Peixe-Zebra/antagonistas & inibidores
17.
Endocrinology ; 153(3): 1288-300, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22234471

RESUMO

Glucocorticoid receptor (GR) signaling is thought to play a key role in embryogenesis, but its specific developmental effects remain unclear. Cortisol is the primary ligand for GR activation in teleosts, and in zebrafish (Danio rerio), the prehatch embryo content of this steroid is of maternal origin. Using early zebrafish developmental stages, we tested the hypothesis that GR signaling is critical for embryo growth and hatching. In zebrafish, maternal GR mRNA is degraded quickly, followed by zygotic synthesis of the receptor. GR protein is widely expressed throughout early development, and we were able to knockdown this protein using morpholino oligonucleotides. This led to a more than 70% reduction in mRNA abundance of matrix metalloproteinase-13 (mmp13), a glucocorticoid-responsive gene. The GR morphants displayed delayed somitogenesis, defects in somite and tail morphogenesis, reduced embryo size, and rarely survived after hatch. This correlated with altered expression of myogenic markers, including myogenin, myostatin, and muscle-specific myosin heavy chain and troponin genes. A key finding was a 70-90% reduction in the mRNA abundance of bone morphogenetic proteins (BMP), including bmp2a, bmp2b, and bmp4 in GR morphants. Bioinformatics analysis confirmed multiple putative glucocorticoid response elements upstream of these BMP genes. GR morphants displayed reduced expression of BMP-modulated genes, including eve1 and pax3. Zebrafish GR mRNA injection rescued the GR morphant phenotype and reversed the disrupted expression of BMP and myogenic genes. Our results for the first time indicate that GR signaling is essential for zebrafish muscle development, and we hypothesize a role for BMP morphogens in this process.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Mesoderma/metabolismo , Músculos/embriologia , Receptores de Glucocorticoides/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Glucocorticoides/metabolismo , Desenvolvimento Muscular/genética , Fenótipo , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Elementos de Resposta , Transdução de Sinais , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa