Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Audiol Neurootol ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38479363

RESUMO

BACKGROUND: Correct individual tonotopic frequency stimulation of the cochlea plays an important role in the further development of anatomy based cochlear implantation. In this context frequency specific fitting of the basal electrode contact with a normal insertion depth can be difficult since it is often placed in a frequency range higher than 10 kHz and current audio processors only stimulate for frequencies up to 8.5 kHz due to microphone characteristics. This results in a mismatch of the high frequencies. Therefore, this study represents a proof of concept for a tonotopic correct insertion and aims to develop an algorithm for a placement of the basal electrode below 8.5 kHz in an experimental setting. METHODS: Pre- and postoperative flat-panel volume CT scans with secondary reconstructions were performed in 10 human temporal bone specimens. The desired frequency location for the most basal electrode contact was set at 8.25 kHz. The distance from the round window to the position where the basal electrode contact was intended to be located was calculated preoperatively using 3D-curved multiplanar reconstruction and a newly developed mathematical approach. A specially designed cochlear implant electrode array with customized markers imprinted on the silicone of the electrode array was inserted in all specimens based on the individually calculated insertion depths. All postoperative measurements were additionally validated using an otological planning software. RESULTS: Positioning of the basal electrode contact was reached with only a small mean deviation of 37 ± 399 Hz and 0.06 ± 0.37 mm from the planned frequency of 8.25 kHz. The mean rotation angle up to the basal electrode contact was 51 ± 5 °. In addition, the inserted electrode array adequately covered the apical regions of the cochleae. CONCLUSION: Using this algorithm, it was possible to position the basal electrode array contact in an area of the cochlea that could be correctly stimulated by the existing speech processors in the context of tonotopic correct fitting.

2.
Eur Arch Otorhinolaryngol ; 279(12): 5623-5630, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35511294

RESUMO

PURPOSE: Surgery is a standard therapy for tympanojugular paragangliomas (TJP). Maintaining the quality of life (QoL) requires functional preservation. The flexible CO2 laser allows contact-free tumor removal. This retrospective study compares the postoperative functional outcomes of TJP surgery with and without the flexible CO2 laser. METHODS: Between 2005 and 2019, 51 patients with TJP were surgically treated at a tertiary hospital. Until 2012, 17 patients received conventional surgery. Thereafter, the flexible laser was used in 34 patients. Tumor extend, pre- and postoperative cranial nerve function, and complications were compared between the groups. RESULTS: The cohort consisted of 33 class A and B tumors and 18 class C and D tumors. Preoperative embolization was performed in 17 cases. Class C/D TJP were usually removed via an infratemporal fossa type A approach. Gross total tumor removal was achieved in 14/18 class C/D tumors. 3/51 patients suffered from long-term partial or complete facial palsy. No differences in post-therapeutic cranial nerve function or complications were noted between the conventional and laser group. One recurrence was observed after complete tumor resection. CONCLUSION: The flexible CO2 laser was shown to be a safe and effective alternative to conventional bipolar cauterization, which is appreciated by the surgeon in these highly vascularized tumors. Both techniques allowed a high tumor control rate and good long-term results also from a functional point of view.


Assuntos
Paraganglioma , Qualidade de Vida , Humanos , Estudos Retrospectivos , Dióxido de Carbono , Paraganglioma/patologia , Paraganglioma/cirurgia , Nervos Cranianos/patologia , Resultado do Tratamento
3.
Eur Arch Otorhinolaryngol ; 279(5): 2309-2319, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34101009

RESUMO

PURPOSE: For further improvements in cochlear implantation, the measurement of the cochlear duct length (CDL) and the determination of the electrode contact position (ECP) are increasingly in the focus of clinical research. Usually, these items were investigated by multislice computed tomography (MSCT). The determination of ECP was only possible by research programs so far. Flat-panel volume computed tomography (fpVCT) and its secondary reconstructions (fpVCTSECO) allow for high spatial resolution for the visualization of the temporal bone structures. Using a newly developed surgical planning software that enables the evaluation of CDL and the determination of postoperative ECP, this study aimed to investigate the combination of fpVCT and otological planning software to improve the implementation of an anatomically based cochlear implantation. METHODS: Cochlear measurements were performed utilizing surgical planning software in imaging data (MSCT, fpVCT and fpVCTSECO) of patients with and without implanted electrodes. RESULTS: Measurement of the CDL by the use of an otological planning software was highly reliable using fpVCTSECO with a lower variance between the respective measurements compared to MSCT. The determination of the inter-electrode-distance (IED) between the ECP was improved in fpVCTSECO compared to MSCT. CONCLUSION: The combination of fpVCTSECO and otological planning software permits a simplified and more reliable analysis of the cochlea in the pre- and postoperative setting. The combination of both systems will enable further progress in the development of an anatomically based cochlear implantation.


Assuntos
Implante Coclear , Implantes Cocleares , Cóclea/diagnóstico por imagem , Cóclea/cirurgia , Ducto Coclear , Implante Coclear/métodos , Tomografia Computadorizada de Feixe Cônico , Humanos , Software
4.
Stereotact Funct Neurosurg ; 99(2): 150-158, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32998131

RESUMO

PURPOSE: The risk/benefit-ratio of deep brain stimulation (DBS) depends on focusing the electrical field onto the target volume, excluding side-effect eliciting structures. Directional leads limiting radial current diffusion can target stimulation but add a spatial degree of freedom that requires control to align multimodal imaging datasets and for anatomical interpretation of stimulation. Unpredictable postoperative lead rotations have been reported. The extent and timing of rotation from the surgically intended alignment remain uncertain, as does the time point at which directional stimulation can be safely initiated without risking unexpected shifts in stimulation volume. We present a retrospective analysis of clinically indicated, repeated neuroimaging controls postimplantation in patients with directional DBS systems, which allow estimation of the amount and timing of postoperative lead rotation. METHODS: Data from 67 patients with directional leads and multiple cranial computer tomographies (CCT) and/or rotation fluoroscopies at different postoperative time points were included. Rotation angles were detected based on CCT artifacts (n = 56) or direct visualization of lead segments on rotation fluoroscopies (n = 52). Cross-validation of both methods was conducted in patients who received both imaging modalities (n = 51). RESULTS: Rotation angles deviated significantly (∼30°) from their intended 0° anterior/posterior orientation. Rotation was firmly established within the first postoperative day, with no additional torque in subsequent scans. The two methods highly correlated (right hemisphere: R2 = 0.94, left hemisphere: R2 = 0.91). CONCLUSION: Both methods for measuring rotation angles led to comparable results and can be used interchangeably. Directional stimulation settings can safely be initiated after the first postoperative day, without risking subsequent lead rotation-related anatomical shifts.


Assuntos
Estimulação Encefálica Profunda , Artefatos , Humanos , Neuroimagem , Estudos Retrospectivos , Crânio
5.
Otol Neurotol ; 45(3): e234-e240, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38238926

RESUMO

HYPOTHESIS: Measurements of the cochlear duct length (CDL) are dependent on the resolution of the imaging dataset. BACKGROUND: Previous research has shown highly precise cochlear measurements using 3D-curved multiplanar reconstruction (MPR) and flat-panel volume computed tomography (fpVCT). Thus far, however, there has been no systematic evaluation of the imaging dataset resolution required for optimal CDL measurement. Therefore, the aim of this study was to evaluate the dependence of CDL measurement on the resolution of the imaging dataset to establish a benchmark for future CDL measurements. METHODS: fpVCT scans of 10 human petrous bone specimens were performed. CDL was measured using 3D-curved MPR with secondary reconstruction of the fpVCT scans (fpVCT SECO ) and increasing resolution from 466 to 99 µm. In addition, intraobserver variability was evaluated. A best-fit function for calculation of the CDL was developed to provide a valid tool when there are no measurements done with high-resolution imaging datasets. RESULTS: Comparison of different imaging resolution settings showed significant differences for CDL measurement in most of the tested groups ( p < 0.05), except for the two groups with the highest resolution. Imaging datasets with a resolution lower than 200 µm showed lower intraobserver variability than the other resolution settings, although there were no clinically unacceptable errors with respect to the Bland-Altman plots. The developed best-fit function showed high accuracy for CDL calculation using resolution imaging datasets of 300 µm or lower. CONCLUSION: 3D-curved MPR in fpVCT with a resolution of the imaging dataset of 200 µm or higher revealed the most precise CDL measurement. There was no benefit of using a resolution higher than 200 µm with regard to the accuracy of the CDL measurement.


Assuntos
Implante Coclear , Implantes Cocleares , Humanos , Tomografia Computadorizada por Raios X/métodos , Ducto Coclear/cirurgia , Cóclea/diagnóstico por imagem , Cóclea/cirurgia , Tomografia Computadorizada de Feixe Cônico , Osso Petroso/diagnóstico por imagem , Osso Petroso/cirurgia , Implante Coclear/métodos
6.
Otol Neurotol ; 45(6): 662-670, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38865722

RESUMO

INTRODUCTION: Cochlear duct length (CDL) measurement plays a role in the context of individualized cochlear implant (CI) surgery regarding an individualized selection and implantation of the CI electrode carrier and an efficient postoperative anatomy-based fitting process. The level of detail of the preoperative temporal bone CT scan depends on the imaging modality with major impact on CDL measurements and CI electrode contact position determination. The aim of this study was to evaluate the accuracy of perioperative CDL measurements and electrode contact determination in photon-counting CT (PCCT). METHODS: Ten human fresh-frozen petrous bone specimens were examined with a first-generation PCCT. A clinically applicable radiation dose of 27.1 mGy was used. Scans were acquired before and after CI insertion. Postoperative measurement of the CDL was conducted using an otological planning software and 3D-curved multiplanar reconstruction. Investigation of electrode contact position was performed by two respective observers. Measurements were compared with a conventional multislice CT and to a high-resolution flat-panel volume CT with secondary reconstructions. RESULTS: Pre- and postoperative CDL measurements in PCCT images showed no significant difference to high-resolution flat-panel volume CT. Postoperative CI electrode contact determination was also as precise as the flat-panel CT-based assessment. PCCT and flat-panel volume CT were equivalent concerning interobserver variability. CONCLUSION: CDL measurement with PCCT was equivalent to flat-panel volume CT with secondary reconstructions. PCCT enabled highly precise postoperative CI electrode contact determination with substantial advantages over conventional multislice CT scanners.


Assuntos
Implante Coclear , Humanos , Implante Coclear/métodos , Ducto Coclear/diagnóstico por imagem , Ducto Coclear/cirurgia , Tomografia Computadorizada por Raios X/métodos , Implantes Cocleares , Fótons , Osso Petroso/diagnóstico por imagem , Osso Petroso/cirurgia , Tomografia Computadorizada Multidetectores/métodos , Angiografia/métodos
7.
Cochlear Implants Int ; 24(3): 144-154, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36617441

RESUMO

OBJECTIVES: In cochlear implantation, preoperative prediction of electrode position has recently gained increasing attention. Currently, planning is usually done by multislice CT (MSCT). However, flat-panel volume CT (fpVCT) and its secondary reconstructions (fpVCTSECO) allow for more precise visualization of the cochlea. Combined with a newly developed otological planning software, the position of every single contact can be effectively predicted. In this study it was investigated how accurately radiological prediction forecasts the postoperative electrode localization and whether higher image resolution is advantageous. METHODS: Utilizing otological planning software (OTOPLAN®) and different clinical imaging modalities (MSCT, fpVCT and fpVCTSECO) the electrode localization [angular insertion depth (AID)] and respective contact frequencies were predicted preoperatively and examined postoperatively. Furthermore, inter-electrode-distance (IED) and inter-electrode-frequency difference (IEFD) were evaluated postoperatively. RESULTS: Measurements revealed a preoperative overestimation of AID. Corresponding frequencies were also miscalculated. Determination of IED and IEFD revealed discrepancies at the transition from the basal to the middle turn and round window to the basal turn. All predictions and discrepancies were lowest when using fpVCTSECO. CONCLUSION: The postoperative electrode position can be predicted quite accurately using otological planning software. However, because of several potential misjudgments, high-resolution imaging, such as offered by fpVCTSECO, should be used pre- and postoperatively.


Assuntos
Implante Coclear , Implantes Cocleares , Humanos , Implante Coclear/métodos , Cóclea/diagnóstico por imagem , Cóclea/cirurgia , Tomografia Computadorizada de Feixe Cônico , Software
8.
Sci Rep ; 13(1): 19057, 2023 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-37925540

RESUMO

Automated analysis of the inner ear anatomy in radiological data instead of time-consuming manual assessment is a worthwhile goal that could facilitate preoperative planning and clinical research. We propose a framework encompassing joint semantic segmentation of the inner ear and anatomical landmark detection of helicotrema, oval and round window. A fully automated pipeline with a single, dual-headed volumetric 3D U-Net was implemented, trained and evaluated using manually labeled in-house datasets from cadaveric specimen ([Formula: see text]) and clinical practice ([Formula: see text]). The model robustness was further evaluated on three independent open-source datasets ([Formula: see text] scans) consisting of cadaveric specimen scans. For the in-house datasets, Dice scores of [Formula: see text], intersection-over-union scores of [Formula: see text] and average Hausdorff distances of [Formula: see text] and [Formula: see text] voxel units were achieved. The landmark localization task was performed automatically with an average localization error of [Formula: see text] voxel units. A robust, albeit reduced performance could be attained for the catalogue of three open-source datasets. Results of the ablation studies with 43 mono-parametric variations of the basal architecture and training protocol provided task-optimal parameters for both categories. Ablation studies against single-task variants of the basal architecture showed a clear performance benefit of coupling landmark localization with segmentation and a dataset-dependent performance impact on segmentation ability.


Assuntos
Aprendizado Profundo , Orelha Interna , Humanos , Orelha Interna/diagnóstico por imagem , Cadáver , Processamento de Imagem Assistida por Computador/métodos
9.
Acta Otolaryngol ; 143(11-12): 931-935, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38127466

RESUMO

Background: The cochlear aqueduct (CA), which connects the scala tympani and the subarachnoid space, and its accompanying structures appear to have a significant relevance during cochlear implantation and an accurate visualization in clinical imaging is of great interest. Aims and Objective: This study aims to determine which potential and limitations clinically available imaging modalities have in the visualization of the CA. Methods: Micro-CT, flat-panel volume computed tomography with and without secondary reconstruction (fpVCT, fpVCTseco) and multislice computed tomography (MSCT) of 10 temporal bone specimen were used for 3D analysis of the CA. Results: FpVCTseco proved superior in visualizing the associated structures and lateral portions of the CA, which merge into the basal turn of the cochlea. All clinical imaging modalities proved equal in analyzing the length, total volume of the CA and its area of the medial orifice. Conclusion: The choice of the most accurate clinical imaging modality to evaluate the CA and its associated structures depends on the clinical or scientific question. Furthermore, this study should provide a basis for further investigations analyzing the CA.


Assuntos
Implante Coclear , Implantes Cocleares , Aqueduto da Cóclea/diagnóstico por imagem , Aqueduto da Cóclea/cirurgia , Cóclea/diagnóstico por imagem , Cóclea/cirurgia , Implante Coclear/métodos , Osso Temporal/cirurgia , Microtomografia por Raio-X
10.
Front Surg ; 9: 747517, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35187054

RESUMO

Improved radiological examinations with newly developed 3D models may increase understanding of Meniere's disease (MD). The morphology and course of the vestibular aqueduct (VA) in the temporal bone might be related to the severity of MD. The presented study explored, if the VA of MD and non-MD patients can be grouped relative to its angle to the semicircular canals (SCC) and length using a 3D model. Scans of temporal bone specimens (TBS) were performed using micro-CT and micro flat panel volume computed tomography (mfpVCT). Furthermore, scans were carried out in patients and TBS by computed tomography (CT). The angle between the VA and the three SCC, as well as the length of the VA were measured. From these data, a 3D model was constructed to develop the vestibular aqueduct score (VAS). Using different imaging modalities it was demonstrated that angle measurements of the VA are reliable and can be effectively used for detailed diagnostic investigation. To test the clinical relevance, the VAS was applied on MD and on non-MD patients. Length and angle values from MD patients differed from non-MD patients. In MD patients, significantly higher numbers of VAs could be assigned to a distinct group of the VAS. In addition, it was tested, whether the outcome of a treatment option for MD can be correlated to the VAS.

11.
Sci Rep ; 12(1): 13426, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35927465

RESUMO

This proof of concept describes the use of evoked electromyographic (EMG) activation of the facial nerve for intraoperative monitoring of the electrode insertion during cochlear implantation (CI). Intraoperative EMG measurements from the facial nerve were conducted in nine patients undergoing CI implantation. Electric current pulses were emitted from contacts on the CI array during and immediately after electrode insertion. For control, the results of EMG measurements were compared to postoperative flat panel volume computed tomography scans with secondary reconstruction (fpVCTSECO). During insertion, the EMG response evoked by the electrical stimulation from the CI was growing with the stimulating contact approaching the facial nerve and declined with increasing distance. After full insertion, contacts on the apical half of the CI array stimulated higher EMG responses compared with those on the basal half. Comparison with postoperative imaging demonstrated that electrode contacts stimulating high EMG responses had the shortest distances to the facial nerve. It could be demonstrated that electrically evoked EMG activation of the facial nerve can be used to monitor the progress during CI electrode insertion and to control the intracochlear electrode position after full insertion.


Assuntos
Implante Coclear , Implantes Cocleares , Cóclea/diagnóstico por imagem , Cóclea/fisiologia , Cóclea/cirurgia , Implante Coclear/métodos , Nervo Coclear/fisiologia , Estimulação Elétrica , Nervo Facial/fisiologia , Humanos
12.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 2560-2564, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36085908

RESUMO

Cochlear implants (CI) are an established treatment for people with deafness or severe hearing loss. To restore patients' hearing an electrode array (EA) of the CI is inserted into the cochlea to stimulate the auditory nerve. Thereby, the exact positioning and gentle insertion of the EA is crucial for optimal hearing perception outcome. Currently, only microscopic vision is available for entering the cochlea, but the critical intracochlear process during EA insertion is like a "black box" and the surgeon has to rely on haptic feedback. Methods for visualizing the insertion process during surgery are inaccurate or not suitable for routine use due to radiation exposure. To address this problem, we developed a computer-assisted and image-guided cochlear implantation system with an exact real-time visualization of the EA position during the insertion process. The system is based on an electromagnetic tracking system that measures the position and orientation of a sensor integrated into the tip of a EA prototype and visualizes it in presurgical image data. A first experiment with our system showed that a EA prototype could be inserted into a cochlea of a human temporal bone and placed with an accuracy of [Formula: see text]. A maximum insertion angle of 120° was achieved.


Assuntos
Implante Coclear , Implantes Cocleares , Cóclea/diagnóstico por imagem , Cóclea/cirurgia , Nervo Coclear , Audição , Humanos
13.
Cochlear Implants Int ; 23(1): 32-42, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34519256

RESUMO

OBJECTIVE: There is still a lack in precise postoperative evaluation of the cochlea because of strong artifacts. This study aimed to improve accuracy of postoperative two-turn (2TL) and cochlear duct length (CDL) measurements by applying flat-panel volume computed tomography (fpVCT), secondary reconstruction (fpVCTSECO) and three-dimensional curved multiplanar reconstruction. METHODS: First, 10 temporal bone specimens with or without electrode were measured in multi-slice computed tomography (MSCT), fpVCT and fpVCTSECO and compared to high-resolution micro-CT scans. Later, pre- and postoperative scans of 10 patients were analyzed in a clinical setting. RESULTS: Concerning 2TL, no statistically significant difference was observed between implanted fpVCTSECO and nonimplanted micro-CT in 10 temporal bone specimens. In contrast, there was a significant discrepancy for CDL (difference: -0.7 mm, P = 0.004). Nevertheless, there were no clinically unacceptable errors (±1.5 mm). These results could be confirmed in a clinical setting. Using fpVCTSECO, CDL was slightly underestimated postoperatively (difference: -0.5 mm, P = 0.002) but without any clinically unacceptable errors. CONCLUSION: fpVCTSECO can be successfully applied for a precise measurement of the cochlear lengths pre- and postoperatively. However, users must be aware of a slight systematic underestimation of CDL postoperatively. These results may help to refine electrode selection and frequency mapping.


Assuntos
Implante Coclear , Implantes Cocleares , Cóclea/diagnóstico por imagem , Cóclea/cirurgia , Ducto Coclear/cirurgia , Implante Coclear/métodos , Tomografia Computadorizada de Feixe Cônico , Humanos , Osso Temporal/diagnóstico por imagem , Osso Temporal/cirurgia
14.
Sci Prog ; 104(3): 368504211032090, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34397283

RESUMO

This study aimed to evaluate the feasibility and accuracy of electromagnetic navigation at the lateral skull base in combination with flat panel volume computed tomography (fpVCT) datasets. A mastoidectomy and a posterior tympanotomy were performed on 10 samples of fresh frozen temporal bones. For registration, four self-drilling titanium screws were applied as fiducial markers. Multi-slice computed tomography (MSCT; 600 µm), conventional flat panel volume computed tomography (fpVCT; 466 µm), micro-fpVCT (197 µm) and secondary reconstructed fpVCT (100 µM) scans were performed and data were loaded into the navigation system. The resulting fiducial registration error (FRE) was analysed, and control of the navigation accuracy was performed. The registration process was very quick and reliable with the screws as fiducials. Compared to using the MSCT data, the micro-fpVCT data led to significantly lower FRE values, whereas conventional fpVCT and secondary reconstructed fpVCT data had no advantage in terms of accuracy. For all imaging modalities, there was no relevant visual deviation when targeting defined anatomical points with a navigation probe. fpVCT data are very well suited for electromagnetic navigation at the lateral skull base. The use of titanium screws as fiducial markers turned out to be ideal for comparing different imaging methods. A further evaluation of this approach by a clinical trial is required.


Assuntos
Base do Crânio , Titânio , Tomografia Computadorizada de Feixe Cônico , Marcadores Fiduciais , Base do Crânio/diagnóstico por imagem , Base do Crânio/cirurgia , Tomografia Computadorizada por Raios X/métodos
15.
Otol Neurotol ; 42(3): e294-e303, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33555750

RESUMO

HYPOTHESIS: Flat-panel volume computed tomography (fpVCT) and secondary reconstruction allow for more accurate measurements of two-turn length (2TL), cochlear duct length (CDL), and angular length (AL). BACKGROUND: Cochlear geometry is a controversially debated topic. In the meantime, there are many different studies partly reporting highly divergent values. Our aim is to discuss the differences and to propose a radiological possibility to improve cochlear measurements using 3D-curved multiplanar reconstruction and fpVCT. METHODS: Performing different image modalities and settings, we tried to find a clinically usable option that allows for a high degree of accuracy. Therefore, we tested them against reference values of high-definition micro-computed tomography. RESULTS: Comparison of 99 µm slice thickness secondary reconstruction of fpVCT and reference showed no significant differences for 2TL and CDL (p ≥ 0.05). Accordingly, ICC (intraclass correlation) values were excellent (ICC ≥ 0.75; lower limit of confidence interval [CI] ≥ 0.75; Cronbach's alpha [α] ≥ 0.9). Evaluating AL, there was a significant difference (difference: -17.27°; p = 0.002). The lower limit of the CI of the ICC was unacceptable (ICC = 0.944; lower limit of CI = 0.248; α = 0.990). Regarding the Bland-Altman plots, there were no clinically unacceptable errors, but a systematic underestimation of AL. CONCLUSION: Secondary reconstruction is a suitable tool for producing reliable data that allow the accurate measurement of 2TL and CDL. The option of generating these reconstructions from raw data limits the need for higher radiation doses. Nevertheless, there is an underestimation of AL using secondary reconstructions.


Assuntos
Cóclea , Ducto Coclear , Cóclea/diagnóstico por imagem , Tomografia Computadorizada de Feixe Cônico , Humanos , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa