Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Assunto principal
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecol Evol ; 14(2): e10949, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38371859

RESUMO

Himalayan Musk deer, Moschus chrysogaster is widely distributed but one of the least studied species in Nepal. In this study, we compiled a total of 429 current presence points of direct observation of the species, pellets droppings, and hoofmarks based on field-based surveys during 2018-2021 and periodic data held by the Department of National Park and Wildlife Conservation. We developed the species distribution model using an ensemble modeling approach. We used a combination of bioclimatic, anthropogenic, topographic, and vegetation-related variables to predict the current suitable habitat for Himalayan Musk deer in Nepal. A total of 16 predictor variables were used for habitat suitability modeling after the multicollinearity test. The study shows that the 6973.76 km2 (5%) area of Nepal is highly suitable and 8387.11 km2 (6%) is moderately suitable for HMD. The distribution of HMD shows mainly by precipitation seasonality, precipitation of the warmest quarter, temperature ranges, distance to water bodies, anthropogenic variables, and land use and land cover change (LULC). The probability of occurrence is less in habitats with low forest cover. The response curves indicate that the probability of occurrence of HMD decreases with an increase in precipitation seasonality and remains constant with an increase in precipitation of the warmest quarter. Thus, the fortune of the species distribution will be limited by anthropogenic factors like poaching, hunting, habitat fragmentation and habitat degradation, and long-term forces of climate change.

2.
PeerJ ; 12: e17497, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38832039

RESUMO

Human-wildlife conflict (HWC) is a pressing issue worldwide but varies by species over time and place. One of the most prevalent forms of HWC in the mid-hills of Nepal is human-common-leopard conflict (HLC). Leopard attacks, especially in forested areas, can severely impact villagers and their livestock. Information on HLC in the Gorkha district was scarce, thus making it an ideal location to identify high-risk zones and landscape variables associated with such events. Registered cases were collected and reviewed from the Division Forest Office (DFO) during 2019-2021. Claims from DFO records were confirmed with herders and villagers via eight focus group discussions. To enhance modeling success, researchers identified a total of 163 leopard attack locations on livestock, ensuring a minimum distance of at least 100 meters between locations. Using maximum entropy (MaxEnt) and considering 13 environmental variables, we mapped common leopard attack risk zones. True Skill Statistics (TSS) and area under receiver-operator curve (AUC) were used to evaluate and validate the Output. Furthermore, 10 replications, 1,000 maximum iterations, and 1000 background points were employed during modeling. The average AUC value for the model, which was 0.726 ± 0.021, revealed good accuracy. The model performed well, as indicated by a TSS value of 0.61 ± 0.03. Of the total research area (27.92 km2), about 74% was designated as a low-risk area, 19% as a medium-risk area, and 7% as a high-risk area. Of the 13 environmental variables, distance to water (25.2%) was the most significant predictor of risk, followed by distance to road (16.2%) and elevation (10.7%). According to response curves, the risk of common leopard is highest in the areas between 1.5 to 2 km distances from the water sources, followed by the closest distance from a road and an elevation of 700 to 800 m. Results suggest that managers and local governments should employ intervention strategies immediately to safeguard rural livelihoods in high-risk areas. Improvements include better design of livestock corrals, insurance, and total compensation of livestock losses. Settlements near roads and water sources should improve the design and construction of pens and cages to prevent livestock loss. More studies on the characteristics of victims are suggested to enhance understanding of common leopard attacks, in addition to landscape variables. Such information can be helpful in formulating the best management practices.


Assuntos
Panthera , Animais , Nepal , Humanos , Gado
3.
Heliyon ; 9(6): e16639, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37274642

RESUMO

Over the last few years, intensifying human impact and the deterioration of natural habitats have severely restricted the global distribution of large herbivores. Rucervus duvaucelii, commonly recognized as the swamp deer, is a habitat-specialist endemic large herbivore of the Indian Subcontinent. It is classified as vulnerable by the IUCN and listed in CITES Appendix I due to a steep decline in its population, which is primarily due to anthropogenic causes. In Nepal, the last remaining population of this species is confined to limited pocket areas within the western Terai Arc Landscape. We explored potential habitat for swamp deer across this landscape using species distribution modelling through the MaxEnt algorithm by using 173 field-verified presence points alongside six anthropogenic, four topographic, and four vegetation-related variables. Our study found that out of the total study area (9207 km2), only 6% (590 km2) was suitable for swamp deer. Approximately 45% of suitable habitat was incorporated within protected areas, with Shuklaphanta National Park harboring the largest habitat patch. The suitability of habitat was discovered to be positively associated with low-elevation areas, areas near water sources, and areas far from settlements, implying the need to conserve water sources and minimize the extension of anthropogenic pressure for their long-term conservation. Additionally, we suggest the implications of a swamp deer-centric conservation strategy, with an emphasis on increasing connectivity through the corridors and landscape-level population connectivity through trans-boundary conservation initiatives between Nepal and India. Moreover, considering large herbivores' high vulnerability to extinction, similar researche incorporating anthropogenic factors is of the utmost importance to produce vital information on habitat suitability for conserving other regionally and globally endemic, habitat-specialized herbivores.

4.
Scientifica (Cairo) ; 2023: 6599067, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38089447

RESUMO

Private forests offer diverse ecosystem services, including carbon sequestration and biodiversity conservation, which are crucial for Nepal. However, there is a notable absence of comprehensive research on these services. Assessing carbon sequestration in private forests can have economic advantages for forest owners by promoting resource conservation and contributing to greenhouse gas reduction. This study aims to estimate and compare carbon stocks in private forests located in two distinct physiographic regions of Nepal while also identifying the factors influencing these carbon stocks. The analysis focuses on 16 private forests (with 0.1 to 0.5 hectares) each from Chitwan district (Terai region) and Kavrepalanchok district (Hilly region). Field data collection involved direct measurements of tree and sapling diameter at breast height (DBH), as well as height and class of trees and poles, utilizing a total enumeration method. These collected values were utilized to calculate aboveground biomass (AGTB), aboveground sapling biomass (AGSB), belowground biomass, and carbon stock. Private forests of Terai region were dominated by Shorea borneensis, Tectona grandis, and Dalbergia sissoo, whereas the Hilly region was dominated by Pinus patula, Alnus nepalensis, Schima wallichii, and Quercus leucotrichophora. The aboveground biomass carbon in the Terai region's private forests was estimated to be 83.53 t·ha-1, while in the Hilly region, it was 37.32 t·ha-1. The belowground biomass carbon in the Terai region's private forests was found to be 21.72 t·ha-1, compared to 9.70 t·ha-1 in the Hilly region. Consequently, the estimated total carbon stock in the Terai and Hilly regions' private forests was 105.25 t·ha-1 (386.26 t·ha-1 CO2-eq) and 47.02 t·ha-1 (172.57 t·ha-1 CO2-eq), respectively. Carbon sequestration in the Terai region's private forests was discovered to be 2.24 times higher than that in the Hilly region. These findings underscore the significant potential of private forests, which can generate economic benefits through carbon trading and leverage mechanisms such as REDD+/CDM to promote sustainable conservation practices.

5.
Animals (Basel) ; 12(19)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36230422

RESUMO

Forest management practice plays a critical role in conserving biodiversity. However, there are few studies on how forest management practice affects bird communities. Here, we compare the effectiveness of the Panchase Protection Forest (PPF; protected forest with government administration) and the Tibrekot Community Forest (TCF; community forest with community forest users' group administration) in hosting bird diversity in the mid-hills of Nepal. We examined 96 point count stations during summer and winter in 2019 and recorded 160 species of birds with three globally threatened vultures (red-headed vulture Sarcogyps calvus, slender-billed vulture Gyps tenuirostris, and white-rumped vulture Gyps bengalensis). Forest management practice, season, and elevation all influenced the richness and abundance of birds. The diversity, richness, and abundance of birds and the most common feeding guilds (insectivore, omnivore, and carnivore) were higher in TCF than in PPF; however, globally threatened species were only recorded in PPF. We also recorded a higher bird species turnover (beta diversity) in TCF than in PPF. Our study indicates that community-managed forests can also provide quality habitats similar to those of protected forests managed by the government, and provide refuge to various bird species and guilds. However, we recommend more comparative studies in other tropical and sub-tropical areas to understand how different forest management practices influence bird diversity.

6.
Ecol Evol ; 12(1): e8491, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35136552

RESUMO

Anthropogenic pressures in human-dominated landscapes often contribute to wildlife mortality. Carnivores are especially vulnerable to human-induced mortality due to the perceived threat to livestock and humans. Despite having widespread conservation implications, carnivore mortality data have been largely underutilized within Nepal. This study utilized Maxent to identify high-risk areas and explore the contribution of habitat attributes associated with carnivore mortality using the casualty database within the Gandaki province of central Nepal. We categorized the risk to carnivore species in three taxonomic groups, Felid, Viverridae, and Herpestidae, and identified a 3704-km2 area within the province at high risk for carnivore casualty. The middle mountains were the riskiest physiographic zone, and the Annapurna Conservation Area represented the largest risk zone among the four protected areas. Agricultural land was the most problematic area in terms of carnivore casualty. The human population was positively associated with high-risk areas and the number of casualties, whereas protected area cover had a negative association. This study identified that the common leopard was at the highest risk of mortality and therefore would benefit from the implementation of an action plan and species-specific conservation strategies, especially within identified high-risk zones. An expansion of protected areas in the middle mountain region would serve to greatly reduce carnivore casualty. Species distribution modeling can be further used with national-level spatial and temporal mortality data to identify the most prominent casualty times and pinpoint potential casualty locations throughout the country.

7.
Ecol Evol ; 11(5): 2086-2099, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33717444

RESUMO

Floral attributes often influence the foraging choices of nectar-feeding butterflies, given the close association between plants and these butterfly pollinators. The diversity of butterflies is known to a large extent in Nepal, but little information is available on the feeding habits of butterflies. This study was conducted along the periphery of Rupa Wetland from January to December 2019 to assess butterfly species diversity and to identify the factors influencing their foraging choices. In total, we recorded 1535 individuals of 138 species representing all six families. For our examination of butterfly-nectar plant interactions, we recorded a total of 298 individuals belonging to 31 species of butterfly visiting a total of 28 nectar plant species. Overall, total butterfly visitation was found to be significantly influenced by plant category (herbaceous preferred over woody), floral color (yellow white and purple preferred over pink), and corolla type (tubular preferred over nontubular). Moreover, there was a significant positive correlation between the proboscis length of butterflies and the corolla tube length of flowers. Examining each butterfly family separately revealed that, for four of the families (Lycaenidae, Nymphalidae, Papilionidae, and Pieridae), none of the tested factors (flower color, plant category, and corolla type) were shown to significantly influence butterfly abundance at flowers. However, Hesperidae abundance was found to be significantly influenced by both flower color (with more butterflies observed at yellow flowers than purple) and flower type (with more butterflies observed at tubular flowers than nontubular flowers). Our results reveal that Rupa Lake is a suitable habitat for butterflies, providing valuable floral resources. Hence, further detailed studies encompassing all seasons, a greater variety of plants, and other influential factors in different ecological regions are fundamental for creating favorable environments to sustain important butterfly pollinators and help create balanced wetland ecosystems.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa