Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 145(1): 104-16, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21458670

RESUMO

The Bcl-2 family member Bax translocates from the cytosol to mitochondria, where it oligomerizes and permeabilizes the mitochondrial outer membrane to promote apoptosis. Bax activity is counteracted by prosurvival Bcl-2 proteins, but how they inhibit Bax remains controversial because they neither colocalize nor form stable complexes with Bax. We constrained Bax in its native cytosolic conformation within cells using intramolecular disulfide tethers. Bax tethers disrupt interaction with Bcl-x(L) in detergents and cell-free MOMP activity but unexpectedly induce Bax accumulation on mitochondria. Fluorescence loss in photobleaching (FLIP) reveals constant retrotranslocation of WT Bax, but not tethered Bax, from the mitochondria into the cytoplasm of healthy cells. Bax retrotranslocation depends on prosurvival Bcl-2 family proteins, and inhibition of retrotranslocation correlates with Bax accumulation on the mitochondria. We propose that Bcl-x(L) inhibits and maintains Bax in the cytosol by constant retrotranslocation of mitochondrial Bax.


Assuntos
Citosol/metabolismo , Mitocôndrias/metabolismo , Proteína X Associada a bcl-2/metabolismo , Proteína bcl-X/metabolismo , Apoptose , Linhagem Celular Tumoral , Humanos , Conformação Proteica , Dobramento de Proteína , Transporte Proteico , Proteína X Associada a bcl-2/química
2.
Mol Ther ; 30(2): 855-867, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-34547467

RESUMO

Cell-penetrating peptides (CPPs) hold great promise for intracellular delivery of therapeutic proteins. However, endosomal entrapment of transduced cargo is a major bottleneck hampering their successful application. While developing a transducible zinc finger protein-based artificial transcription factor targeting the expression of endothelin receptor A, we identified interaction between the CPP and the endosomal membrane or endosomal entanglement as a main culprit for endosomal entrapment. To achieve endosomal disentanglement, we utilized endosome-resident proteases to sever the artificial transcription factor from its CPP upon arrival inside the endosome. Using this approach, we greatly enhanced the correct subcellular localization of the disentangled artificial transcription factor, significantly increasing its biological activity and distribution in vivo. With rational engineering of proteolytic sensitivity, we propose a new design principle for transducible therapeutic proteins, helping CPPs attain their full potential as delivery vectors for therapeutic proteins.


Assuntos
Peptídeos Penetradores de Células , Receptores de Endotelina , Peptídeos Penetradores de Células/metabolismo , Endossomos/metabolismo , Receptores de Endotelina/metabolismo , Fatores de Transcrição/metabolismo
3.
Exp Cell Res ; 396(2): 112322, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-33068559

RESUMO

Meningothelial cells (MECs) are the cellular component of the meninges that provide physical protection to the central nervous system (CNS). Their main function is the formation of a barrier enclosing the brain including the cerebrospinal fluid (CSF). Further, MECs are involved in maintaining CSF homeostasis by clearing CSF from bacteria and apoptotic cells. Furthermore, secretion of pro- and anti-inflammatory cytokines and chemokines involves MECs in immunological processes in the CNS. We demonstrated that meningothelial Ben-Men-1 cells ingest neurotoxic peptides amyloid-ß (Aß1-40) and protein α-synuclein up to about 10-fold more efficiently compared to neuronal-like SH-SY5Y cells. Aß1-40 and α-synuclein are mainly taken up via macropinocytosis. Caveolar endocytosis in addition contributes to α-synuclein ingestion. Upon uptake, both are trafficked towards lysosomal degradation. While production of reactive oxygen species (ROS) following exposure to Aß25-35 and α-synuclein was similar between Ben-Men-1 and SH-SY5Y cells, mitochondrial function in Ben-Men-1 was significantly more robust to Aß25-35 treatment compared to neuronal-like SHSY5Y cells. Similarly, Ben-Men-1 were significantly less susceptible to Aß25-35-induced cell death than neuronal-like cells. Furthermore, co-culture with Ben-Men-1 offered significant protection to neuronal-like cells against Aß25-35-induced apoptosis. This study reveals for the first time the function of MECs as scavengers of neurotoxic Aß and α-synuclein, thereby connecting these cells to neuroprotective processes and suggesting a new mechanism and pathway for clearing neurotoxic substances from the CSF.


Assuntos
Células Epiteliais/metabolismo , Meninges/citologia , Neurotoxinas/metabolismo , Peptídeos/metabolismo , Proteínas/metabolismo , Peptídeos beta-Amiloides/metabolismo , Linhagem Celular Tumoral , Endocitose , Humanos , Mitocôndrias/metabolismo , Neuroproteção , Frações Subcelulares/metabolismo , alfa-Sinucleína/metabolismo
4.
Exp Eye Res ; 200: 108250, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32956686

RESUMO

The meninges not only surround the brain and the spinal cord but also the optic nerve. Meningeal-derived extracellular matrix (ECM) is a crucial component of the pial basement membrane, glia limitans and important for maintenance of optic nerve axon integrity, homeostasis and retinal ganglion cell health. To get closer insight into optic nerve meningeal-derived ECM composition, we performed proteomic analysis of the sheep optic nerve subarachnoid space (SAS). Candidate components were confirmed in cultures of primary human meningothelial cells (phMECs) and human optic nerve samples. Sheep optic nerve SAS samples were analysed by LC-MS, identified proteins were matched to their human orthologs and filtered using gene lists representing all major ECM components. To validate these findings digital droplet PCR (ddPCR) to evaluate mRNA expression of all candidate components identified was performed on cultures of phMECs. In addition, one protein per major ECM group was stained on human optic nerve sections and on phMEC cultures. Employing LC-MS, 1273 proteins were identified and subjected to bioinformatic analysis. Gene ontology analysis revealed six out of forty-four collagen types (1A1, 1A2, 3A1, 6A2, 6A3 and 14A1), three out of eleven laminin subunits (A4, B2, C1) and six out of twenty-seven hyaluronan binding proteins (CD44, versican (VCAN), C1q binding protein, neurocan (NCAN), brevican (BCAN) and hyalaluronan proteoglycan link protein 2 (HAPLN2)) were present in our cohort. DdPCR in phMEC cell culture confirmed presence of all candidate components except NCAN, BCAN and HAPLN2. Immunohistochemistry (IHC) staining on human optic nerve sections and immunofluorescence (IF) staining on in vitro cultured phMECs showed strong immunopositivity for collagen-typeI-α1 (COL1A1), lamininγ1 (LAMC1), and VCAN. Fibronectin (FN1) was exclusively present in cultures of phMECs. Using a combined bioinformatics and immunohistological approach, we describe the ECM composition of the optic nerve subarachnoid space. As this space plays an important role in maintaining optic nerve function, a better understanding of ECM composition in this delicate environment might be key to further pathophysiological insight into optic nerve degeneration and associated disorders.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Nervo Óptico/metabolismo , Espaço Subaracnóideo/metabolismo , Animais , Imuno-Histoquímica , Masculino , Modelos Animais , Nervo Óptico/citologia , Ovinos
5.
EMBO J ; 32(7): 1036-51, 2013 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-23481258

RESUMO

Protein targeting to specified cellular compartments is essential to maintain cell function and homeostasis. In eukaryotic cells, two major pathways rely on N-terminal signal peptides to target proteins to either the endoplasmic reticulum (ER) or mitochondria. In this study, we show that the ER signal peptides of the prion protein-like protein shadoo, the neuropeptide hormone somatostatin and the amyloid precursor protein have the property to mediate alternative targeting to mitochondria. Remarkably, the targeting direction of these signal peptides is determined by structural elements within the nascent chain. Each of the identified signal peptides promotes efficient ER import of nascent chains containing α-helical domains, but targets unstructured polypeptides to mitochondria. Moreover, we observed that mitochondrial targeting by the ER signal peptides correlates inversely with ER import efficiency. When ER import is compromised, targeting to mitochondria is enhanced, whereas improving ER import efficiency decreases mitochondrial targeting. In conclusion, our study reveals a novel mechanism of dual targeting to either the ER or mitochondria that is mediated by structural features within the nascent chain.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas Ligadas por GPI/metabolismo , Mitocôndrias/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Sinais Direcionadores de Proteínas , Somatostatina/metabolismo , Retículo Endoplasmático/genética , Proteínas Ligadas por GPI/genética , Células HeLa , Humanos , Mitocôndrias/genética , Proteínas do Tecido Nervoso/genética , Estrutura Terciária de Proteína , Transporte Proteico/genética , Somatostatina/genética
6.
Proc Natl Acad Sci U S A ; 109(47): 19426-31, 2012 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-23129617

RESUMO

AMPA receptors (AMPARs) mediate the majority of fast excitatory neurotransmission, and their density at postsynaptic sites determines synaptic strength. Ubiquitination is a posttranslational modification that dynamically regulates the synaptic expression of many proteins. However, very few of the ubiquitinating enzymes implicated in the process have been identified. In a screen to identify transmembrane RING domain-containing E3 ubiquitin ligases that regulate surface expression of AMPARs, we identified RNF167. Predominantly lysosomal, a subpopulation of RNF167 is located on the surface of cultured neurons. Using a RING mutant RNF167 or a specific shRNA to eliminate endogenous RNF167, we demonstrate that AMPAR surface expression increases in hippocampal neurons with disrupted RNF167 activity and that RNF167 is involved in activity-dependent ubiquitination of AMPARs. In addition, RNF167 regulates synaptic AMPAR currents, whereas synaptic NMDAR currents are unaffected. Therefore, our study identifies RNF167 as a selective regulator of AMPAR-mediated neurotransmission and expands our understanding of how ubiquitination dynamically regulates excitatory synapses.


Assuntos
Receptores de AMPA/metabolismo , Transmissão Sináptica , Ubiquitina-Proteína Ligases/metabolismo , Animais , Células Cultivadas , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HeLa , Hipocampo/citologia , Humanos , Lisossomos/metabolismo , Neurônios/metabolismo , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
7.
Semin Cell Dev Biol ; 23(5): 499-508, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22516642

RESUMO

Insights into the role of ubiquitin-dependent signaling in the regulation of apoptosis have provided one of the most significant breakthroughs in recent years for cell death research. It has been revealed that all steps in the apoptotic cascade, including transcriptional regulation of apoptotic gene expression, outer mitochondrial membrane permeabilization and caspase activation, are under the control of the ubiquitin/proteasome system. This makes ubiquitin signaling one on the most critical life and death decision checkpoints in mammalian cells. Here we discuss the ubiquitylation-dependent regulation of the mitochondrial steps in apoptosis, with a focus on the role of regulated protein degradation in this process. The newly identified ubiquitylation-dependent processes in the Bcl-2 family-regulated outer mitochondrial membrane permeabilization, as well as the role of mitochondria-associated ubiquitin ligases and other molecular components of the ubiquitin/proteasome system in the control of mitochondrial steps in apoptosis, are discussed.


Assuntos
Apoptose , Mitocôndrias/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Animais , Humanos , Ubiquitina-Proteína Ligases/metabolismo
8.
EMBO J ; 29(8): 1458-71, 2010 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-20300062

RESUMO

Bax, a pro-apoptotic protein from the Bcl-2 family, is central to apoptosis regulation. To suppress spontaneous apoptosis, Bax must be under stringent control that may include regulation of Bax conformation and expression levels. We report that IBRDC2, an IBR-type RING-finger E3 ubiquitin ligase, regulates the levels of Bax and protects cells from unprompted Bax activation and cell death. Downregulation of IBRDC2 induces increased cellular levels and accumulation of the active form of Bax. The ubiquitination-dependent regulation of Bax stability is suppressed by IBRDC2 downregulation and stimulated by IBRDC2 overexpression in both healthy and apoptotic cells. Although mostly cytosolic in healthy cells, upon induction of apoptosis, IBRDC2 accumulates in mitochondrial domains enriched with Bax. Mitochondrial accumulation of IBRDC2 occurs in parallel with Bax activation and also depends on the expression levels of Bcl-xL. Furthermore, IBRDC2 physically interacts with activated Bax. By applying Bax mutants in HCT116 Bax(-/-) cells, combined with the use of active Bax-specific antibodies, we have established that both mitochondrial localization and apoptotic activation of Bax are required for IBRDC2 translocation to the mitochondria.


Assuntos
Apoptose , Ubiquitina-Proteína Ligases/metabolismo , Proteína X Associada a bcl-2/metabolismo , Sequência de Aminoácidos , Citocromos c/metabolismo , Citosol/metabolismo , Células HeLa , Humanos , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Transporte Proteico , Ubiquitina-Proteína Ligases/análise , Ubiquitinação
9.
J Neuroinflammation ; 11: 35, 2014 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-24565420

RESUMO

BACKGROUND: Meningothelial cells (MECs) are the cellular components of the meninges. As such, they provide important barrier function for the central nervous system (CNS) building the interface between neuronal tissue and the cerebrospinal fluid (CSF), and are also part of the immune response of the CNS. METHODS: Human, immortalized MECs were analyzed by flow cytometry and confocal microscopy to study the uptake of apoptotic cells. Furthermore, cytokine and chemokine production by MECs was analyzed by cytokine array and ELISA. RESULTS: We found that MECs are highly active phagocytes able of ingesting and digesting large amounts of apoptotic cells. Furthermore, the uptake of apoptotic cells by MECs was immune suppressive via inhibiting the secretion of pro-inflammatory and chemoattractant cytokines and chemokines IL-6, IL-8, IL-16, MIF, and CXCL1, while increasing the secretion of anti-inflammatory IL-1 receptor antagonist by MECs. CONCLUSION: MECs respond with the secretion of anti-inflammatory cytokines and chemokines following the uptake of apoptotic cells potentially connecting these cells to processes important for the shut-down of immune responses in the brain.


Assuntos
Apoptose , Citocinas/metabolismo , Fagócitos/fisiologia , Análise de Variância , Animais , Linhagem Celular Tumoral , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Imageamento Tridimensional , Meningioma/patologia , Microscopia Confocal , Neuroblastoma/fisiopatologia , Suínos
10.
Biol Cell ; 105(7): 304-15, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23634770

RESUMO

BACKGROUND INFORMATION: Meningothelial cells (MECs) are the cellular components of the meninges protecting the brain and as such provide important barrier function for the central nervous system building the interface between neuronal tissue and the cerebrospinal fluid (CSF). MECs were previously shown to be involved in the clearance of waste products from the CSF and in maintaining the optic nerve microenvironment. In addition, MECs are involved in immunological processes in the brain by secretion of pro-inflammatory cytokines in response to various pathologically relevant stress conditions. RESULTS: In this study, we analysed the uptake of latex beads as well as bacteria by human MECs using flow cytometric analyses. We found that MECs are highly active phagocytes able of ingesting large amounts of latex beads, as well as Gram-positive and Gram-negative bacteria. Phagocytic activity of MECs was sensitive to nocodazole and cytochalasin D treatment to a varying degree depending on particle composition. Interestingly, Gram-positive bacteria such as Staphylococcus aureus are more readily taken up compared with Gram-negative Escherichia coli. In addition, pre-treatment of MECs with lipopolysaccharide (LPS) or phorbol-12-myristate-13-acetate (PMA) enhanced S. aureus uptake, whereas PMA but not LPS was effective in enhancing E. coli uptake. CONCLUSIONS: Thus, MECs are highly active facultative phagocytes likely important for the maintenance of CSF homeostasis and host defence in the central nervous system especially against Gram-positive bacteria.


Assuntos
Bactérias/imunologia , Células Epiteliais/imunologia , Meninges/citologia , Sistema Nervoso Central/citologia , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/microbiologia , Células Epiteliais/microbiologia , Humanos , Meninges/imunologia , Meninges/microbiologia , Fagocitose
11.
Fluids Barriers CNS ; 21(1): 20, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38419077

RESUMO

BACKGROUND: Impaired cerebrospinal fluid (CSF) dynamics is involved in the pathophysiology of neurodegenerative diseases of the central nervous system and the optic nerve (ON), including Alzheimer's and Parkinson's disease, as well as frontotemporal dementia. The smallness and intricate architecture of the optic nerve subarachnoid space (ONSAS) hamper accurate measurements of CSF dynamics in this space, and effects of geometrical changes due to pathophysiological processes remain unclear. The aim of this study is to investigate CSF dynamics and its response to structural alterations of the ONSAS, from first principles, with supercomputers. METHODS: Large-scale in-silico investigations were performed by means of computational fluid dynamics (CFD) analysis. High-order direct numerical simulations (DNS) have been carried out on ONSAS geometry at a resolution of 1.625 µm/pixel. Morphological changes on the ONSAS microstructure have been examined in relation to CSF pressure gradient (CSFPG) and wall strain rate, a quantitative proxy for mass transfer of solutes. RESULTS: A physiological flow speed of 0.5 mm/s is achieved by imposing a hydrostatic pressure gradient of 0.37-0.67 Pa/mm across the ONSAS structure. At constant volumetric rate, the relationship between pressure gradient and CSF-accessible volume is well captured by an exponential curve. The ONSAS microstructure exhibits superior mass transfer compared to other geometrical shapes considered. An ONSAS featuring no microstructure displays a threefold smaller surface area, and a 17-fold decrease in mass transfer rate. Moreover, ONSAS trabeculae seem key players in mass transfer. CONCLUSIONS: The present analysis suggests that a pressure drop of 0.1-0.2 mmHg over 4 cm is sufficient to steadily drive CSF through the entire subarachnoid space. Despite low hydraulic resistance, great heterogeneity in flow speeds puts certain areas of the ONSAS at risk of stagnation. Alterations of the ONSAS architecture aimed at mimicking pathological conditions highlight direct relationships between CSF volume and drainage capability. Compared to the morphological manipulations considered herein, the original ONSAS architecture seems optimized towards providing maximum mass transfer across a wide range of pressure gradients and volumetric rates, with emphasis on trabecular structures. This might shed light on pathophysiological processes leading to damage associated with insufficient CSF flow in patients with optic nerve compartment syndrome.


Assuntos
Hidrodinâmica , Pressão Intraocular , Humanos , Nervo Óptico/patologia , Nervo Óptico/fisiologia , Espaço Subaracnóideo/fisiologia , Pressão do Líquido Cefalorraquidiano/fisiologia , Líquido Cefalorraquidiano/fisiologia
12.
Fluids Barriers CNS ; 20(1): 12, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36747230

RESUMO

BACKGROUND: The three-layered meninges cover and protect the central nervous system and form the interface between cerebrospinal fluid and the brain. They are host to a lymphatic system essential for maintaining fluid dynamics inside the cerebrospinal fluid-filled subarachnoid space and across the brain parenchyma via their connection to glymphatic structures. Meningeal fibroblasts lining and traversing the subarachnoid space have direct impact on the composition of the cerebrospinal fluid through endocytotic uptake as well as extensive protein secretion. In addition, the meninges are an active site for immunological processes and act as gatekeeper for immune cells entering the brain. During aging in mice, lymphatic drainage from the brain is less efficient contributing to neurodegenerative processes. Aging also affects the immunological status of the meninges, with increasing numbers of T cells, changing B cell make-up, and altered macrophage complement. METHODS: We employed RNASeq to measure gene expression and to identify differentially expressed genes in meninges isolated from young and aged mice. Using Ingenuity pathway, GO term, and MeSH analyses, we identified regulatory pathways and cellular functions in meninges affected by aging. RESULTS: Aging had profound impact on meningeal gene expression. Pathways related to innate as well as adaptive immunity were affected. We found evidence for increasing numbers of T and B lymphocytes and altered activity profiles for macrophages and other myeloid cells. Furthermore, expression of pro-inflammatory cytokine and chemokine genes increased with aging. Similarly, the complement system seemed to be more active in meninges of aged mice. Altered expression of solute carrier genes pointed to age-dependent changes in cerebrospinal fluid composition. In addition, gene expression for secreted proteins showed age-dependent changes, in particular, genes related to extracellular matrix composition and organization were affected. CONCLUSIONS: Aging has profound effects on meningeal gene expression; thereby affecting the multifaceted functions meninges perform to maintain the homeostasis of the central nervous system. Thus, age-dependent neurodegenerative processes and cognitive decline are potentially in part driven by altered meningeal function.


Assuntos
Sistema Nervoso Central , Meninges , Camundongos , Animais , Meninges/metabolismo , Encéfalo/fisiologia , Envelhecimento , Expressão Gênica
13.
bioRxiv ; 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37693581

RESUMO

Peroxisome de novo biogenesis requires yet unidentified mitochondrial proteins. We report that the outer mitochondrial membrane (OMM)-associated E3 Ub ligase MARCH5 is vital for generating mitochondria-derived pre-peroxisomes. MARCH5 knockout results in accumulation of immature peroxisomes and lower expression of various peroxisomal proteins. Upon fatty acid-induced peroxisomal biogenesis, MARCH5 redistributes to newly formed peroxisomes; the peroxisomal biogenesis under these conditions is inhibited in MARCH5 knockout cells. MARCH5 activity-deficient mutants are stalled on peroxisomes and induce accumulation of peroxisomes containing high levels of the OMM protein Tom20 (mitochondria-derived pre-peroxisomes). Furthermore, depletion of peroxisome biogenesis factor Pex14 leads to the formation of MARCH5- and Tom20-positive peroxisomes, while no peroxisomes are detected in Pex14/MARCH5 dko cells. Reexpression of WT, but not MARCH5 mutants, restores Tom20-positive pre-peroxisomes in Pex14/MARCH5 dko cells. Thus, MARCH5 acts upstream of Pex14 in mitochondrial steps of peroxisome biogenesis. Our data validate the hybrid, mitochondria-dependent model of peroxisome biogenesis and reveal that MARCH5 is an essential mitochondrial protein in this process. Summary: The authors found that mitochondrial E3 Ub ligase MARCH5 controls the formation of mitochondria-derived pre-peroxisomes. The data support the hybrid, mitochondria-dependent model of peroxisome biogenesis and reveal that MARCH5 is an essential mitochondrial protein in this process.

14.
Fluids Barriers CNS ; 20(1): 21, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36944985

RESUMO

BACKGROUND: The meninges, formed by dura, arachnoid and pia mater, cover the central nervous system and provide important barrier functions. Located between arachnoid and pia mater, the cerebrospinal fluid (CSF)-filled subarachnoid space (SAS) features a variety of trabeculae, septae and pillars. Like the arachnoid and the pia mater, these structures are covered with leptomeningeal or meningothelial cells (MECs) that form a barrier between CSF and the parenchyma of the optic nerve (ON). MECs contribute to the CSF proteome through extensive protein secretion. In vitro, they were shown to phagocytose potentially toxic proteins, such as α-synuclein and amyloid beta, as well as apoptotic cell bodies. They therefore may contribute to CSF homeostasis in the SAS as a functional exchange surface. Determining the total area of the SAS covered by these cells that are in direct contact with CSF is thus important for estimating their potential contribution to CSF homeostasis. METHODS: Using synchrotron radiation-based micro-computed tomography (SRµCT), two 0.75 mm-thick sections of a human optic nerve were acquired at a resolution of 0.325 µm/pixel, producing images of multiple terabytes capturing the geometrical details of the CSF space. Special-purpose supercomputing techniques were employed to obtain a pixel-accurate morphometric description of the trabeculae and estimate internal volume and surface area of the ON SAS. RESULTS: In the bulbar segment, the ON SAS microstructure is shown to amplify the MECs surface area up to 4.85-fold compared to an "empty" ON SAS, while just occupying 35% of the volume. In the intraorbital segment, the microstructure occupies 35% of the volume and amplifies the ON SAS area 3.24-fold. CONCLUSIONS: We provided for the first time an estimation of the interface area between CSF and MECs. This area is of importance for estimating a potential contribution of MECs on CSF homeostasis.


Assuntos
Nervo Óptico , Humanos , Nervo Óptico/metabolismo , Tomografia por Raios X , Peptídeos beta-Amiloides/metabolismo
15.
J Biol Chem ; 286(10): 8633-8643, 2011 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-21205830

RESUMO

To identify novel regulators of endoplasmic reticulum (ER)-linked protein degradation and ER function, we determined the entire inventory of membrane-spanning RING finger E3 ubiquitin ligases localized to the ER. We identified 24 ER membrane-anchored ubiquitin ligases and found Nixin/ZNRF4 to be central for the regulation of calnexin turnover. Ectopic expression of wild type Nixin induced a dramatic down-regulation of the ER-localized chaperone calnexin that was prevented by inactivation of the Nixin RING domain. Importantly, Nixin physically interacts with calnexin in a glycosylation-independent manner, induces calnexin ubiquitination, and p97-dependent degradation, indicating an ER-associated degradation-like mechanism of calnexin turnover.


Assuntos
Calnexina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo/fisiologia , Retículo Endoplasmático/metabolismo , Calnexina/genética , Proteínas de Ligação a DNA/genética , Retículo Endoplasmático/genética , Glicosilação , Células HeLa , Humanos , Estabilidade Proteica
16.
J Cell Sci ; 123(Pt 4): 619-26, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20103533

RESUMO

Mitochondria constantly divide and combine through fission and fusion activities. MARCH5, a mitochondrial E3 ubiquitin ligase, has been identified as a molecule that binds mitochondrial fission 1 protein (hFis1), dynamin-related protein 1 (Drp1) and mitofusin 2 (Mfn2), key proteins in the control of mitochondrial fission and fusion. However, how these interactions control mitochondrial dynamics, and cellular function has remained obscure. Here, we show that shRNA-mediated MARCH5 knockdown promoted the accumulation of highly interconnected and elongated mitochondria. Cells transfected with MARCH5 shRNA or a MARCH5 RING domain mutant displayed cellular enlargement and flattening accompanied by increased senescence-associated beta-galactosidase (SA-beta-Gal) activity, indicating that these cells had undergone cellular senescence. Notably, a significant increase in Mfn1 level, but not Mfn2, Drp1 or hFis1 levels, was observed in MARCH5-depleted cells, indicating that Mfn1 is a major ubiquitylation substrate. Introduction of Mfn1(T109A), a GTPase-deficient mutant form of Mfn1, into MARCH5-RNAi cells not only disrupted mitochondrial elongation, but also abolished the increase in SA-beta-Gal activity. Moreover, the aberrant mitochondrial phenotypes in MARCH5-RNAi cells were reversed by ectopic expression of Drp1, but not by hFis1, and reversion of the mitochondria morphology in MARCH5-depleted cells was accompanied by a reduction in SA-beta-Gal activity. Collectively, our data indicate that the lack of MARCH5 results in mitochondrial elongation, which promotes cellular senescence by blocking Drp1 activity and/or promoting accumulation of Mfn1 at the mitochondria.


Assuntos
Senescência Celular/fisiologia , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Mitocondriais/antagonistas & inibidores , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Substituição de Aminoácidos , Sequência de Bases , Linhagem Celular , Primers do DNA/genética , Dinaminas , Células HeLa , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Proteínas de Transporte da Membrana Mitocondrial , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Transfecção , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
17.
Acta Neuropathol ; 123(2): 157-71, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22143516

RESUMO

Maintaining the functional integrity of mitochondria is pivotal for cellular survival. It appears that neuronal homeostasis depends on high-fidelity mitochondria, in particular. Consequently, mitochondrial dysfunction is a fundamental problem associated with a significant number of neurological diseases, including Parkinson's disease (PD), Huntington's disease (HD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS) and various peripheral neuropathies, as well as the normal aging process. To ensure optimal mitochondrial function, diverse, evolutionarily conserved mitochondrial quality control mechanisms are in place, including the scavenging of toxic reactive oxygen species (ROS) and degradation of damaged mitochondrial proteins, but also turnover of whole organelles. In this review we will discuss various mitochondria-associated conditions, focusing on the role of protein turnover in mitochondrial maintenance with special emphasis on neurodegenerative disorders.


Assuntos
Mitocôndrias/metabolismo , Mitocôndrias/patologia , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Proteínas Mitocondriais/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Animais , DNA Mitocondrial/fisiologia , Metabolismo Energético/genética , Humanos , Mitocôndrias/genética , Doenças Mitocondriais/genética , Proteínas Mitocondriais/genética , Doenças Neurodegenerativas/genética
18.
J Cell Biol ; 178(1): 71-84, 2007 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-17606867

RESUMO

We identify a mitochondrial E3 ubiquitin ligase, MARCH5, as a critical regulator of mitochondrial fission. MARCH5 RING mutants and MARCH5 RNA interference induce an abnormal elongation and interconnection of mitochondria indicative of an inhibition of mitochondrial division. The aberrant mitochondrial phenotypes in MARCH5 RING mutant-expressing cells are reversed by ectopic expression of Drp1, but not another mitochondrial fission protein Fis1. Moreover, as indicated by abnormal clustering and mitochondrial accumulation of Drp1, as well as decreased cellular mobility of YFP-Drp1 in cells expressing MARCH5 RING mutants, MARCH5 activity regulates the subcellular trafficking of Drp1, likely by impacting the correct assembly at scission sites or the disassembly step of fission complexes. Loss of this activity may account for the observed mitochondrial division defects. Finally, MARCH5 RING mutants and endogenous Drp1, but not wild-type MARCH5 or Fis1, co-assemble into abnormally enlarged clusters in a Drp1 GTPase-dependent manner, suggesting molecular interactions among these proteins. Collectively, our data suggest a model in which mitochondrial division is regulated by a MARCH5 ubiquitin-dependent switch.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Proteínas de Membrana/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Ubiquitina-Proteína Ligases/fisiologia , Dinaminas , GTP Fosfo-Hidrolases/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Microscopia Confocal , Proteínas Associadas aos Microtúbulos/genética , Proteínas Mitocondriais/genética , Mutação , Estrutura Terciária de Proteína/genética , Interferência de RNA , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética
19.
Autophagy ; 18(1): 171-190, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33966597

RESUMO

Initiation of PINK1- and PRKN-dependent mitophagy is a highly regulated process involving the activity of the AAA-ATPase VCP/p97, a cofactor-guided multifunctional protein central to handling ubiquitinated client proteins. Removal of ubiquitinated substrates such as the mitofusin MFN2 from the outer mitochondrial membrane by VCP is critical for PRKN accumulation on mitochondria, which drives mitophagy. Here we characterize the role of the UBA and UBX-domain containing VCP cofactor UBXN1/SAKS1 during mitophagy. Following mitochondrial depolarization and depending on PRKN, UBXN1 translocated alongside VCP to mitochondria. Prior to mitophagy, loss of UBXN1 led to mitochondrial fragmentation, diminished ATP production, and impaired ER-mitochondrial apposition. When mitophagy was induced in cells lacking UBXN1, mitochondrial translocation of VCP and PRKN was impaired, diminishing mitophagic flux. In addition, UBXN1 physically interacted with PRKN in a UBX-domain depending manner. Interestingly, ectopic expression of the pro-mitophagic VCP cofactor UBXN6/UBXD1 fully reversed impaired PRKN recruitment in UBXN1-/- cells. Mechanistically, UBXN1 acted downstream of PINK1 by facilitating MFN2 removal from mitochondria. In UBXN1-/- cells exposed to mitochondrial stress, MFN2 formed para-mitochondrial blobs likely representing blocked intermediates of the MFN2 removal process partly reversible by expression of UBXN6. Presence of these MFN2 blobs strongly correlated with impaired PRKN translocation to depolarized mitochondria. Our observations connect the VCP cofactor UBXN1 to the initiation and maintenance phase of PRKN-dependent mitophagy, and indicate that, upon mitochondrial stress induction, MFN2 removal from mitochondria occurs through a specialized process.


Assuntos
Mitofagia , Ubiquitina-Proteína Ligases , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagia , GTP Fosfo-Hidrolases/metabolismo , Humanos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteína com Valosina/metabolismo
20.
Brain Commun ; 4(5): fcac240, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36262370

RESUMO

The pathophysiology of vision loss and loss of visual field in patients with idiopathic intracranial hypertension with papilloedema is not fully understood. Although elevated CSF pressure induces damage to the optic nerve due to stasis of axoplasmic flow, there is no clear relationship between the severity of papilloedema and CSF pressure. Furthermore, there are cases of purely unilateral papilloedema and cases without papilloedema despite significantly elevated intracranial pressure as well as papilloedema that can persist despite a successfully lowered intracranial pressure. We hypothesize that at least in some of such cases, in addition to purely pressure-induced damage to the optic nerve, the biochemical composition of the CSF in the subarachnoid space surrounding the orbital optic nerve may play a role in the pathogenesis of vision loss. In this retrospective study, we report on lipocalin-type prostaglandin D synthase concentrations in the CSF within the perioptic and lumbar subarachnoid space in 14 patients with idiopathic intracranial hypertension (13 females, mean age 45 ± 13 years) with chronic persistent papilloedema resistant to maximum-tolerated medical therapy and visual impairment. CSF was collected from the subarachnoid space of the optic nerve during optic nerve sheath fenestration and from the lumbar subarachnoid space at the time of lumbar puncture. CSF was analysed for lipocalin-type prostaglandin D synthase and the concentrations compared between the two sites using nephelometry. The mean lipocalin-type prostaglandin D synthase concentration in the perioptic subarachnoid space was significantly higher compared with the concentration in the lumbar subarachnoid space (69 ± 51 mg/l without correction of serum contamination and 89 ± 67 mg/l after correction of serum contamination versus 23 ± 8 mg/l; P < 0.0001, Mann-Whitney U-test). These measurements demonstrate a change and imbalance in the biochemical environment of the optic nerve. Its possible effect is discussed.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa