Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Biophys J ; 121(17): 3263-3270, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35918898

RESUMO

Development of a robust, uniform, and magnetically orientable lipid mimetic will undoubtedly advance solid-state NMR of macroscopically aligned membrane proteins. Here, we report on a novel lipid membrane mimetic based on peptoid belts. The peptoids, composed of 15 residues, were synthesized by alternating N-(2-phenethyl)glycine with N-(2-carboxyethyl)glycine residues at a 2:1 molar ratio. The chemically synthesized peptoids possess a much lower degree of polydispersity versus styrene-maleic acid polymers, thus yielding uniform discs. Moreover, the peptoid oligomers are more flexible and do not require a specific folding, unlike lipoproteins, in order to wrap around the hydrophobic membrane core. The NMR spectra measured for the membrane-bound form of Pf1 coat protein incorporated in this new lipid mimetics demonstrate a higher order parameter and uniform linewidths compared with the conventional bicelles and peptide-based macrodiscs. Importantly, unlike bicelles, the peptoid-based macrodiscs are detergent free.


Assuntos
Peptoides , Glicina , Lipídeos , Espectroscopia de Ressonância Magnética , Proteínas de Membrana/química , Peptoides/química
2.
Solid State Nucl Magn Reson ; 111: 101701, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33260039

RESUMO

The benefits of triple-resonance experiments for structure determination of macroscopically oriented membrane proteins by solid-state NMR are discussed. While double-resonance 1H/15N experiments are effective for structure elucidation of alpha-helical domains, extension of the method of oriented samples to more complex topologies and assessing side-chain conformations necessitates further development of triple-resonance (1H/13C/15N) NMR pulse sequences. Incorporating additional spectroscopic dimensions involving 13C spin-bearing nuclei, however, introduces essential complications arising from the wide frequency range of the 1H-13C dipolar couplings and 13C CSA (>20 â€‹kHz), and the presence of the 13C-13C homonuclear dipole-dipole interactions. The recently reported ROULETTE-CAHA pulse sequence, in combination with the selective z-filtering, can be used to evolve the structurally informative 1H-13C dipolar coupling arising from the aliphatic carbons while suppressing the signals from the carbonyl and methyl regions. Proton-mediated magnetization transfer under mismatched Hartman-Hahn conditions (MMHH) can be used to correlate 13C and 15N nuclei in such triple-resonance experiments for the subsequent 15N detection. The recently developed pulse sequences are illustrated for n-acetyl Leucine (NAL) single crystal and doubly labeled Pf1 coat protein reconstituted in magnetically aligned bicelles. An interesting observation is that in the case of 15N-labeled NAL measured at 13C natural abundance, the triple (1H/13C/15N) MMHH scheme predominantly gives rise to long-range intermolecular magnetization transfers from 13C to 15N spins; whereas direct Hartmann-Hahn 13C/15N transfer is entirely intramolecular. The presented developments advance NMR of oriented samples for structure determination of membrane proteins and liquid crystals.


Assuntos
Proteínas de Membrana , Prótons , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética/métodos , Proteínas de Membrana/química , Ressonância Magnética Nuclear Biomolecular/métodos
3.
Angew Chem Int Ed Engl ; 59(9): 3554-3557, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-31887238

RESUMO

In oriented-sample (OS) solid-state NMR of membrane proteins, the angular-dependent dipolar couplings and chemical shifts provide a direct input for structure calculations. However, so far only 1 H-15 N dipolar couplings and 15 N chemical shifts have been routinely assessed in oriented 15 N-labeled samples. The main obstacle for extending this technique to membrane proteins of arbitrary topology has remained in the lack of additional experimental restraints. We have developed a new experimental triple-resonance NMR technique, which was applied to uniformly doubly (15 N, 13 C)-labeled Pf1 coat protein in magnetically aligned DMPC/DHPC bicelles. The previously inaccessible 1 Hα -13 Cα dipolar couplings have been measured, which make it possible to determine the torsion angles between the peptide planes without assuming α-helical structure a priori. The fitting of three angular restraints per peptide plane and filtering by Rosetta scoring functions has yielded a consensus α-helical transmembrane structure for Pf1 protein.


Assuntos
Proteínas de Membrana/química , Ressonância Magnética Nuclear Biomolecular , Isótopos de Carbono/química , Inovirus/metabolismo , Marcação por Isótopo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Isótopos de Nitrogênio/química , Proteínas Virais/química
4.
J Biomol NMR ; 73(5): 229-244, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31076969

RESUMO

Multidimensional solid-state NMR spectra of oriented membrane proteins can be used to infer the backbone torsion angles and hence the overall protein fold by measuring dipolar couplings and chemical shift anisotropies, which depend on the orientation of each peptide plane with respect to the external magnetic field. However, multiple peptide plane orientations can be consistent with a given set of angular restraints. This ambiguity is further exacerbated by experimental uncertainty in obtaining and interpreting such restraints. The previously developed algorithms for structure calculations using angular restraints typically involve a sequential walkthrough along the backbone to find the torsion angles between the consecutive peptide plane orientations that are consistent with the experimental data. This method is sensitive to experimental uncertainty in interpreting the peak positions of as low as ± 10 Hz, often yielding high structural RMSDs for the calculated structures. Here we present a significantly improved version of the algorithm which includes the fitting of several peptide planes at once in order to prevent propagation of error along the backbone. In addition, a protocol has been devised for filtering the structural solutions using Rosetta scoring functions in order to find the structures that both fit the spectrum and satisfy bioinformatics restraints. The robustness of the new algorithm has been tested using synthetic angular restraints generated from the known structures for two proteins: a soluble protein 2gb1 (56 residues), chosen for its diverse secondary structure elements, i.e. an alpha-helix and two beta-sheets, and a membrane protein 4a2n, from which the first two transmembrane helices (having a total of 64 residues) have been used. Extensive simulations have been performed by varying the number of fitted planes, experimental error, and the number of NMR dimensions. It has been found that simultaneously fitting two peptide planes always shifted the distribution of the calculated structures toward lower structural RMSD values as compared to fitting a single torsion-angle pair. For each protein, irrespective of the simulation parameters, Rosetta was able to distinguish the most plausible structures, often having structural RMSDs lower than 2 Å with respect to the original structure. This study establishes a framework for de-novo protein structure prediction using a combination of solid-state NMR angular restraints and bioinformatics.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Proteínas de Membrana/química , Conformação Proteica
5.
Biophys J ; 114(2): 392-399, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29401436

RESUMO

A membrane-bound form of Pf1 coat protein reconstituted in magnetically aligned DMPC/DHPC bicelles was used as a molecular probe to quantify for the viscosity of the lipid membrane interior by measuring the uniaxial rotational diffusion coefficient of the protein. Orientationally dependent 15N NMR relaxation times in the rotating frame, or T1ρ, were determined by fitting individually the decay of the resolved NMR peaks corresponding to the transmembrane helix of Pf1 coat protein as a function of the spin-lock time incorporated into the 2D SAMPI4 pulse sequence. The T1ρ relaxation mechanism was modeled by uniaxial rotational diffusion on a cone, which yields a linear correlation with respect to the bond factor sin4θB, where θB is the angle that the NH bond forms with respect to the axis of rotation. Importantly, the bond factors can be independently measured from the dipolar couplings in the separated local-field SAMPI4 spectra. From this dependence, the value of the diffusion coefficient D|| = 8.0 × 105 s-1 was inferred from linear regression of the experimental T1ρ data even without any spectroscopic assignment. Alternatively, a close value of D|| = 7.7 × 105 s-1 was obtained by fitting the T1ρ relaxation data for the assigned NMR peaks of the transmembrane domain of Pf1 to a wavelike pattern as a function of residue number. The method illustrates the use of single-helix transmembrane peptides as molecular probes to assess the dynamic parameters of biological membranes by NMR relaxation in oriented lipid bilayers.


Assuntos
Membrana Celular/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Rotação , Anisotropia , Membrana Celular/química , Difusão , Dimiristoilfosfatidilcolina/química , Espectroscopia de Ressonância Magnética , Micelas , Éteres Fosfolipídicos/química
7.
J Biomol NMR ; 67(2): 135-144, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28205016

RESUMO

Multidimensional separated local-field and spin-exchange experiments employed by oriented-sample solid-state NMR are essential for structure determination and spectroscopic assignment of membrane proteins reconstituted in macroscopically aligned lipid bilayers. However, these experiments typically require a large number of scans in order to establish interspin correlations. Here we have shown that a combination of optimized repetitive cross polarization (REP-CP) and membrane-embedded free radicals allows one to enhance the signal-to-noise ratio by factors 2.4-3.0 in the case of Pf1 coat protein reconstituted in magnetically aligned bicelles with their normals being either parallel or perpendicular to the main magnetic field. Notably, spectral resolution is not affected at the 2:1 radical-to-protein ratio. Spectroscopic assignment of Pf1 coat protein in the parallel bicelles has been established as an illustration of the method. The proposed methodology will advance applications of oriented-sample NMR technique when applied to samples containing smaller quantities of proteins and three-dimensional experiments.


Assuntos
Radicais Livres/química , Espectroscopia de Ressonância Magnética , Proteínas de Membrana/química , Bacteriófago Pf1 , Espectroscopia de Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/normas , Razão Sinal-Ruído , Proteínas Virais/química
8.
Biophys J ; 108(1): 5-9, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25564843

RESUMO

Anodic aluminum oxide substrates with macroscopically aligned homogeneous nanopores of 80 nm in diameter enable two-dimensional, solid-state nuclear magnetic resonance studies of lipid-induced conformational changes of uniformly (15)N-labeled Pf1 coat protein in native-like bilayers. The Pf1 helix tilt angles in bilayers composed of two different lipids are not entirely governed by the membrane thickness but could be rationalized by hydrophobic interactions of lysines at the bilayer interface. The anodic aluminum oxide alignment method is applicable to a broader repertoire of lipids versus bicelle bilayer mimetics currently employed in solid-state nuclear magnetic resonance of oriented samples, thus allowing for elucidation of the role played by lipids in shaping membrane proteins.


Assuntos
Óxido de Alumínio/química , Proteínas de Membrana/química , Nanotubos/química , Ressonância Magnética Nuclear Biomolecular/métodos , Dimiristoilfosfatidilcolina/química , Estudos de Viabilidade , Análise dos Mínimos Quadrados , Bicamadas Lipídicas/química , Microscopia Eletrônica de Varredura , Isótopos de Nitrogênio , Fosfatidilcolinas/química , Fosfatidilgliceróis/química , Isótopos de Fósforo , Estrutura Secundária de Proteína
9.
J Magn Reson ; 362: 107677, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38631171

RESUMO

One of the most essential prerequisites for the development of pulse Dynamic Nuclear Polarization (DNP) is the ability to generate high-power coherent mm-wave pulses at the electron precession frequencies corresponding to the magnetic fields of modern high-resolution NMR spectrometers. As a major step towards achieving this goal, an Extended Interaction Klystron (EIK) pulse amplifier custom-built by the Communications and Power Industries, Inc. and producing up to 140 W at 197.8 GHz, was integrated with in-house built NMR/DNP/EPR spectrometer operating at 7 T magnetic field. The spectrometer employs a Thomas Keating, Ltd. quasioptical bridge to direct mm-waves into a homebuilt DNP probe incorporating photonic bandgap (PBG) resonators to further boost electronic B1e fields. Three-pulse electron spin echo nutation experiments were employed to characterize the B1e fields at the sample by operating the homodyne 198 GHz bridge in an induction mode. Room-temperature experiments with a single-crystal high-pressure, high-temperature (HPHT) diamond and a polystyrene film doped with BDPA radical yielded < 9 ns π/2 pulses at ca. 50 W specified EIK output at the corresponding resonance frequencies and the PBG resonator quality factor of Q≈300. DNP experiments carried out in a "gated" mode by supplying 20 µs mm-wave pulses every 1 ms yielded 13C solid-effect DNP with gains up to 20 for the polystyrene-BDPA sample at natural 13C abundance. For a single-crystal HPHT diamond, the gated DNP mode yielded almost the same 13C enhancement as a low-power continuous wave (CW) mode at 0.4 W, whereas no DNP effect was observed for the BDPA/polystyrene sample in the latter case. To illustrate the versatility of our upgraded DNP spectrometer, room-temperature Overhauser DNP enhancements of 7-14 for 31P NMR signal were demonstrated using a liquid droplet of 1 M tri-phenyl phosphine co-dissolved with 100 mM of BDPA in toluene­d8.

10.
J Struct Biol X ; 9: 100095, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38094992

RESUMO

Solid-state Nuclear Magnetic Resonance (NMR) in combination with magnetically aligned discoidal lipid mimics allows for studying the conformations of membrane proteins in planar, lipid-rich bilayer environments and at the physiological temperature. We have recently demonstrated the general applicability of macrodiscs composed of DMPC lipids and peptoid belts, which yield magnetic alignment and NMR spectroscopic resolution comparable or superior to detergent-containing bicelles. Here we report on a considerable improvement in the magnetic alignment and NMR resolution of peptoid-based macrodiscs consisting of a mixture of the zwitterionic and negatively charged lipids (DMPC/DMPG at the 85% to 15% molar ratio). The resulting linewidths are about 30% sharper due to the higher orientational order parameter likely arising from the stabilizing electrostatic repulsion between the discs. Moreover, highly aligned, detergent-free macrodiscs can be formed with a longer-chain lipid, DPPC. Interestingly, the spectra of Pf1 in the two lipid mimetics are almost indistinguishable, which would mean that the overall transmembrane helix tilt might be governed not only by the hydrophobic matching but also possibly by the interactions of the flanking lysine and arginine residues at the membrane interface.

11.
J Biomol NMR ; 54(3): 307-16, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22976525

RESUMO

Oriented-sample NMR (OS-NMR) has emerged as a powerful tool for the structure determination of membrane proteins in their physiological environments. However, the traditional spectroscopic assignment method in OS NMR that uses the "shotgun" approach, though effective, is quite labor- and time-consuming as it is based on the preparation of multiple selectively labeled samples. Here we demonstrate that, by using a combination of the spin exchange under mismatched Hartmann-Hahn conditions and a recent sensitivity-enhancement REP-CP sequence, spectroscopic assignment of solid-state NMR spectra of Pf1 coat protein reconstituted in magnetically aligned bicelles can be significantly improved. This method yields a two-dimensional spin-exchanged version of the SAMPI4 spectrum correlating the (15)N chemical shift and (15)N-(1)H dipolar couplings, as well as spin-correlations between the (i, i ± 1) amide sites. Combining the spin-exchanged SAMPI4 spectrum with the original SAMPI4 experiment makes it possible to establish sequential assignments, and this technique is generally applicable to other uniaxially aligned membrane proteins. Inclusion of an (15)N-(15)N correlation spectrum into the assignment process helps establish correlations between the peaks in crowded or ambiguous spectral regions of the spin-exchanged SAMPI4 experiment. Notably, unlike the traditional method, only a uniformly labeled protein sample is required for spectroscopic assignment with perhaps only a few selectively labeled "seed" spectra. Simulations for the magnetization transfer between the dilute spins under mismatched Hartmann Hahn conditions for various B (1) fields have also been performed. The results adequately describe the optimal conditions for establishing the cross peaks, thus eliminating the need for lengthy experimental optimizations.


Assuntos
Proteínas do Capsídeo/química , Proteínas de Membrana/química , Magnetismo , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular/métodos , Estrutura Terciária de Proteína
12.
J Magn Reson ; 323: 106893, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33418455

RESUMO

Polarization of nuclear spins via Dynamic Nuclear Polarization (DNP) relies on generating sufficiently high mm-wave B1e fields over the sample, which could be achieved by developing suitable resonance structures. Recently, we have introduced one-dimensional photonic band gap (1D PBG) resonators for DNP and reported on prototype devices operating at ca. 200 GHz electron resonance frequency. Here we systematically compare the performance of five (5) PBG resonators constructed from various alternating dielectric layers by monitoring the DNP effect on natural-abundance 13C spins in synthetic diamond microparticles embedded into a commercial polyester-based lapping film of just 3 mil (76 µm) thickness. An odd-numbered configuration of dielectric layers for 1D PBG resonator was introduced to achieve further B1e enhancements. Among the PBG configurations tested, combinations of high-ε perovskite LiTaO3 together with AlN as well as AlN with optical quartz wafers have resulted in ca. 40 to over 50- fold gains in the average mm-wave power over the sample vs. the mirror-only configuration. The results are rationalized in terms of the electromagnetic energy distribution inside the resonators obtained analytically and from COMSOL simulations. It was found that average of B1e2 over the sample strongly depends on the arrangement of the dielectric layers that are the closest to the sample, which favors odd-numbered PBG resonator configurations for their use in DNP.

13.
J Am Chem Soc ; 132(24): 8255-7, 2010 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-20509649

RESUMO

A general sequential assignment strategy for uniformly (15)N-labeled uniaxially aligned membrane proteins is proposed. Mismatched Hartmann-Hahn magnetization transfer is employed to establish proton-mediated correlations among the neighboring (15)N backbone spins. Magnetically aligned Pf1 phage coat protein was used to illustrate the method. Exchanged and nonexchanged separated local field spectra were acquired and overlaid to distinguish the cross-peaks from the main peaks. Most of the original assignments from the literature were confirmed without selectively labeled samples. This method is applicable to proteins with arbitrary topology and will find use in assigning solid-state NMR spectra of oriented membrane proteins for their subsequent structure determination.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Bacteriófago Pf1/química
14.
J Magn Reson ; 317: 106794, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32717619

RESUMO

High-resolution separated local field (SLF) experiments are employed in oriented-sample solid state NMR to measure angular-dependent heteronuclear dipolar couplings for structure determination. While traditionally these experiments have been designed analytically by determining cycles of pulses with specific phases and durations to achieve cancellation of the homonuclear dipolar terms in the average Hamiltonian, recent work has introduced a computational approach to optimizing linewidths of the 1H-15N dipolar resonances. Accelerated by GPU processors, a computer algorithm searches for the optimal parameters by simulating numerous 1H-15N NMR spectra. This approach, termed ROULETTE, showed promising results by developing a new pulse sequence (ROULETTE-1.0) exhibiting 18% sharper mean linewidths than SAMPI4 for an N-acetyl Leucine (NAL) crystal. Herein, we expand on this previous work to improve the performance of the 1H-15N SLF experiment and extend the work beyond the original approach to new SLF experiments. The new algorithm, in addition to finding pulse durations and phases, now searches for the optimal on/off application scheme of radio frequency irradiation on each channel. This constitutes true de novo optimization, effectively optimizing every aspect of a pulse sequence instead of just phases and durations. With an improved ROULETTE algorithm, we have found a new 1H-15N pulse sequence, termed ROULETTE-2.0, yielding 32% sharper mean linewidths than SAMPI4 for NAL crystal at 500 MHz 1H frequency. Whereas both SAMPI4 and ROULETTE-1.0 have a window where the rf power on the I-channel is turned off, the new pulse sequence is entirely windowless. Furthermore, the reliability of the algorithm has been greatly improved in terms of avoiding false positives, i.e. well-performing pulse sequences in silica that fail to render narrow resonances in experiment. The program has been extended to the 13Cα-1Hα SLF experiments, using a 6 subdwell architecture similar to the 1H-15N optimization. Compared to the PISEMA pulse sequence, the mean 13Cα-1Hα linewidth is 17% sharper for the new pulse sequence, termed ROULETTE-CAHA. In addition to superior performance, the work demonstrates the broad applicability of the algorithm and its adaptability to different NMR experiments and spin systems.

15.
J Magn Reson ; 310: 106641, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31734619

RESUMO

Separated Local Field (SLF) experiments have been routinely used for measuring 1H-15N heteronuclear dipolar couplings in oriented-sample solid-state NMR for structure determination of proteins. In the on-going pursuit of designing better-performing SLF pulse sequences (e.g. by increasing the number of subdwells, and varying the rf amplitudes and phases), analytical treatment of the relevant average Hamiltonian terms may become cumbersome and/or nearly impossible. Numerical simulations of NMR experiments using GPU processors can be employed to rapidly calculate spectra for moderately sized spin systems, which permit an efficient numeric optimization of pulse sequences by the Monte Carlo Simulated Annealing protocol. In this work, a computational strategy was developed to find the optimal phases and timings that substantially improve the 1H-15N dipolar linewidths over a broad range of dipolar couplings as compared to SAMPI4. More than 100 pulse sequences were developed de novo and tested on an N-acetyl Leucine crystal. Seventeen distinct pulse sequences were shown to produce sharper mean linewidths than SAMPI4. Overall, these pulse sequences have more variable parameters (involving non-quadrature phases) and do not involve symmetry between the odd and even dwells, which would likely preclude their rigorous analytical treatment. The top performing pulse sequence, termed ROULETTE-1, has 18% sharper mean linewidths than SAMPI4 when run on an N-acetyl Leucine crystal. This sequence was also shown to be robust over a broad range of 1H carrier frequencies and various crystal orientations. The performance of such an optimized pulse sequence was also illustrated on 15N Leucine-labeled Pf1 coat protein reconstituted in magnetically aligned bicelles. For the optimized pulse sequence the mean peak width was 14% sharper than SAMPI4, which in turn yielded a better signal to noise ratio, 20:1 vs. 17:1. This method is potentially extendable to de novo development of a variety of NMR experiments.


Assuntos
Método de Monte Carlo , Ressonância Magnética Nuclear Biomolecular/métodos , Algoritmos , Bacteriófago Pf1/química , Proteínas do Capsídeo/química , Simulação por Computador , Cristalização , Hidrogênio , Leucina/análogos & derivados , Leucina/química , Isótopos de Nitrogênio
16.
Biochim Biophys Acta ; 1768(12): 2979-3000, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18021739

RESUMO

Solid-state 2H NMR spectroscopy gives a powerful avenue to investigating the structures of ligands and cofactors bound to integral membrane proteins. For bacteriorhodopsin (bR) and rhodopsin, retinal was site-specifically labeled by deuteration of the methyl groups followed by regeneration of the apoprotein. 2H NMR studies of aligned membrane samples were conducted under conditions where rotational and translational diffusion of the protein were absent on the NMR time scale. The theoretical lineshape treatment involved a static axial distribution of rotating C-C2H3 groups about the local membrane frame, together with the static axial distribution of the local normal relative to the average normal. Simulation of solid-state 2H NMR lineshapes gave both the methyl group orientations and the alignment disorder (mosaic spread) of the membrane stack. The methyl bond orientations provided the angular restraints for structural analysis. In the case of bR the retinal chromophore is nearly planar in the dark- and all-trans light-adapted states, as well upon isomerization to 13-cis in the M state. The C13-methyl group at the "business end" of the chromophore changes its orientation to the membrane upon photon absorption, moving towards W182 and thus driving the proton pump in energy conservation. Moreover, rhodopsin was studied as a prototype for G protein-coupled receptors (GPCRs) implicated in many biological responses in humans. In contrast to bR, the retinal chromophore of rhodopsin has an 11-cis conformation and is highly twisted in the dark state. Three sites of interaction affect the torsional deformation of retinal, viz. the protonated Schiff base with its carboxylate counterion; the C9-methyl group of the polyene; and the beta-ionone ring within its hydrophobic pocket. For rhodopsin, the strain energy and dynamics of retinal as established by 2H NMR are implicated in substituent control of activation. Retinal is locked in a conformation that is twisted in the direction of the photoisomerization, which explains the dark stability of rhodopsin and allows for ultra-fast isomerization upon absorption of a photon. Torsional strain is relaxed in the meta I state that precedes subsequent receptor activation. Comparison of the two retinal proteins using solid-state 2H NMR is thus illuminating in terms of their different biological functions.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Proteínas de Membrana/química , Retinaldeído/química , Animais , Bacteriorodopsinas/química , Humanos , Modelos Moleculares , Estrutura Molecular , Rodopsina/química
17.
J Am Chem Soc ; 130(34): 11282-3, 2008 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-18680251

RESUMO

Mismatched Hartmann-Hahn conditions between the protons and dilute spins (such as 15N) are found to cause intermolecular magnetization transfer between the low-gamma nuclei over long distances. This transfer is purely proton mediated and occurs even in the absence of direct 15N-15N couplings. This has been demonstrated experimentally using a static single crystal of n-acetyl Leucine with intermolecular distances between the 15N nuclei exceeding 6.5 A. A quantum-mechanical explanation of this phenomenon is given based on the average-Hamiltonian theory which was confirmed by detailed numerical many-spin simulations. The theory and experiment presented in the present paper may help in the development of solid-state NMR methods for studying interhelical contacts in membrane proteins, as well as for their spectral assignment.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Proteínas de Membrana/análise , Proteínas de Membrana/química , Prótons , Teoria Quântica , Acetilação , Simulação por Computador , Leucina/análogos & derivados , Proteínas de Membrana/metabolismo , Nanopartículas/química , Isótopos de Nitrogênio/química , Marcadores de Spin
18.
J Magn Reson ; 293: 104-114, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29920407

RESUMO

An automated technique for the sequential assignment of NMR backbone resonances of oriented protein samples has been developed and tested based on 15N-15N homonuclear exchange and spin-exchanged separated local-field spectra. By treating the experimental spectral intensity as a pseudopotential, the Monte-Carlo Simulated Annealing algorithm has been employed to seek lowest-energy assignment solutions over a large sampling space where direct enumeration would be unfeasible. The determined sequential assignments have been scored based on the positions of the crosspeaks resulting from the possible orders for the main peaks. This approach is versatile in terms of the parameters that can be specified to achieve the best-fit result. At a minimum the algorithm requires a continuous segment of the main-peak chemical shifts obtained from a uniformly labeled sample and a spin-exchanged experimental spectrum represented as a 2D matrix array. With selective labeling experiments, groups of chemical shifts corresponding to specific locations in the protein backbone can be fixed, thereby decreasing the sampling space. The output from the program consists of a list of top-score main peak assignments, which can be subjected to further scoring criteria until a consensus solution is found. The algorithm has first been tested on a synthetic spectrum with randomly generated chemical shifts and dipolar couplings for the main peaks. The original assignments have been successfully recovered for as many as 100 main peaks when residue-type information was used even in the presence of substantial spectral peak overlap. The algorithm was then applied to assigning two sets of experimental spectra to recover and confirm the previously established assignments in an automated fashion. For the 20-residue transmembrane domain of Pf1 coat protein reconstituted in magnetically aligned bicelles, the original assignment by Park et al. (2010) was recovered by the automated algorithm with additional input from 5 selectively labeled amino acid spectra. The second case considered was the 46 residue Pf1 bacteriophage from Thiriot et al. (2005) and Knox et al. (2010), of which 38 residues were fit. Automated fitting resulted in several possible assignments but not exactly the original assignment. By using a post-fitting filtering procedure based on the number of missed cross peaks and Pf1 helical structure, a consensus spectroscopic assignment is proposed covering 84% of the original assignment. While the automated assignment works best in spectra with well-resolved crosspeaks, it also tolerates substantial spectral crowding to yield reasonable assignments in the cases where ambiguity and degeneracy of possible assignment solutions are inevitable.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Algoritmos , Aminoácidos/química , Automação , Bacteriófago Pf1/química , Proteínas do Capsídeo/química , Método de Monte Carlo , Conformação Proteica em alfa-Hélice , Software
19.
J Magn Reson ; 296: 152-164, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30268940

RESUMO

High-field EPR provides significant advantages for studying structure and dynamics of molecular systems possessing an unpaired electronic spin. However, routine use of high-field EPR in biophysical research, especially for aqueous biological samples, is still facing substantial technical difficulties stemming from high dielectric millimeter wave (mmW) losses associated with non-resonant absorption by water and other polar molecules. The strong absorbance of mmW's by water also limits the penetration depth to just fractions of mm or even less, thus making fabrication of suitable sample containers rather challenging. Here we describe a radically new line of high Q-factor mmW resonators that are based on forming lattice defects in one-dimensional photonic band-gap (PBG) structures composed of low-loss ceramic discs of λ/4 in thickness and having alternating dielectric constants. A sample (either liquid or solid) is placed within the E = 0 node of the standing mm wave confined within the defect. A resonator prototype has been built and tested at 94.3 GHz. The resonator performance is enhanced by employing ceramic nanoporous membranes as flat sample holders of controllable thickness and tunable effective dielectric constant. The experimental Q-factor of an empty resonator was  ≈ 420. The Q-factor decreased slightly to  ≈ 370 when loaded with a water-containing nanoporous disc of 50 µm in thickness. The resonator has been tested with a number of liquid biological samples and demonstrated about tenfold gain in concentration sensitivity vs. a high-Q cylindrical TE012-type cavity. Detailed HFSS Ansys simulations have shown that the resonator structure could be further optimized by properly choosing the thickness of the aqueous sample and employing metallized surfaces. The PBG resonator design is readily scalable to higher mmW frequencies and is capable of accommodating significantly larger sample volumes than previously achieved with either Fabry-Perot or cylindrical resonators.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Algoritmos , Cerâmica/química , Campos Eletromagnéticos , Desenho de Equipamento , Gadolínio/química , Gramicidina/química , Bicamadas Lipídicas/química , Nanoestruturas , Fótons , Porosidade , Ondas de Rádio , Água/química
20.
J Magn Reson ; 297: 113-123, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30380458

RESUMO

The most critical condition for performing Dynamic Nuclear Polarization (DNP) NMR experiments is achieving sufficiently high electronic B1e fields over the sample at the matched EPR frequencies, which for modern high-resolution NMR instruments fall into the millimeter wave (mmW) range. Typically, mmWs are generated by powerful gyrotrons and/or extended interaction klystrons (EIKs) sources and then focused onto the sample by dielectric lenses. However, further development of DNP methods including new DNP pulse sequences may require B1e fields higher than one could achieve with the current mmW technology. In order to address the challenge of significantly enhancing the mmW field at the sample, we have constructed and tested one-dimensional photonic band-gap (PBG) mmW resonator that was incorporated inside a double-tuned radiofrequency (rf) NMR saddle coil. The photonic crystal is formed by stacking ceramic discs with alternating high and low dielectric constants and thicknesses of λ/4 or 3λ/4, where λ is the wavelength of the incident mmW field in the corresponding dielectric material. When the mmW frequency is within the band gap of the photonic crystal, a defect created in the middle of the crystal confines the mmW energy, thus forming a resonant structure. An aluminum mirror in the middle of the defect has been used to substitute one-half of the structure with its mirror image in order to reduce the resonator size and simplify its tuning. The latter is achieved by adjusting the width of the defect by moving the aluminum mirror with respect to the dielectric stack using a gear mechanism. The 1D PBG resonator was the key element for constructing a multi-resonant integrated DNP/NMR probehead operating at 190-199 GHz EPR/300 MHz 1H/75.5 MHz 13C NMR frequencies. Initial tests of the multi-resonant DNP/NMR probehead were carried out using a quasioptical mmW  bridge and a Bruker Biospin Avance II spectrometer equipped with a standard Bruker 7 T wide-bore 89 mm magnet parked at 300.13 MHz 1H NMR frequency. The mmW bridge built with all solid-state active components allows for the frequency tuning between ca. 190 and ca. 199 GHz with the output power up to 27 dBm (0.5 W) at 192 GHz and up to 23 dBm (0.2 W) at 197.5 GHz. Room temperature DNP experiments with a synthetic single crystal high-pressure high-temperature (HPHT) diamond (0.3 × 0.3 × 3.0 mm3) demonstrated dramatic 1500-fold enhancement of 13C natural abundance NMR signal at full incident mmW power. Significant 13C DNP enhancement (of about 90) have been obtained at incident mmW powers of as low as <100 µW. Further tests of the resonator performance have been carried out with a thin (ca. 100 µm thickness) composite polystyrene-microdiamond film by controlling the average mmW power at the optimal DNP conditions via a gated mode of operation. From these experiments, the PBG resonator with loaded Q ≃ 250 and finesse F≈75 provides up to 12-fold or 11 db gain in the average mmW power vs. the non-resonant probehead configuration employing only a reflective mirror.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa