Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Nano ; 17(10): 9049-9058, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37171183

RESUMO

The discovery of chiral spin texture has unveiled many unusual yet extraordinary physical phenomena, such as the Néel type domain walls and magnetic skyrmions. A recent theoretical study suggests that a chiral exchange interaction is not limited to a single ferromagnetic layer; instead, three-dimensional spin textures can arise from an interlayer Dzyaloshinskii-Moriya interaction. However, the influence of chiral interlayer exchange coupling on the electrical manipulation of magnetization has rarely been addressed. Here, the coexistence of both symmetric and chiral interlayer exchange coupling between two orthogonally magnetized CoFeB layers in PtMn/CoFeB/W/CoFeB/MgO is demonstrated. Images from polar magneto-optical Kerr effect microscopy indicate that the two types of coupling act concurrently to induce asymmetric domain wall propagation, where the velocities of domain walls with opposite chiralities are substantially different. Based on this microscopic mechanism, field-free switching of the perpendicularly magnetized CoFeB is achieved with a wide range of W thicknesses of 0.6-4.5 nm. This work enriches the understanding of interlayer exchange coupling for spintronic applications.

2.
ACS Appl Mater Interfaces ; 7(39): 21884-9, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26375453

RESUMO

Silicon-rich nitride films are developed and explored using an inductively coupled plasma chemical vapor deposition system at low temperature of 250 °C with an ammonia-free gas chemistry. The refractive index of the developed silicon-rich nitride films can increase from 2.2 to 3.08 at 1550 nm wavelength while retaining a near-zero extinction coefficient when the amount of silane increases. Energy dispersive spectrum analysis gives the silicon to nitrogen ratio in the films. Atomic force microscopy shows a very smooth surface, with a surface roughness root-mean-square of 0.27 nm over a 3 µm × 3 µm area of the 300 nm thick film with a refractive index of 3.08. As an application example, the 300 nm thick silicon-rich nitride film is then patterned by electron beam lithography and etched using inductively coupled plasma system to form thin-film micro/nano waveguides, and the waveguide loss is characterized.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa