Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 21(23): 27611-21, 2013 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-24514279

RESUMO

A new approach for confocal hyperspectral sensing based on the combination of a diffractive optical element and a tunable membrane fluidic lens is demonstrated. This highly compact lens system is designed to maximize the longitudinal chromatic aberration and select a narrow spectral band by spatial filtering. Changing the curvature of the fluidic lens allows the selected band to be scanned over the whole given spectrum. A hybrid prototype with an integrated electro-magnetic micro-actuator has been realized to demonstrate the functionality of the system. Experimental results show that the spectrum transmitted by the system can be tuned over the entire visible wavelength range, from 450 to 900 nm with a narrow and almost constant linewidth of less than 15 nm. Typical response time for scanning the spectrum by 310 nm is less than 40 ms and the lens system shows a highly linear relationship with the driving current.

2.
Appl Opt ; 52(14): 3203-15, 2013 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-23669831

RESUMO

We present the dispersion characteristics of 18 liquids and one resin, which are widely used as media for liquid lenses in adaptive and tunable optics and for index matching in spectrochemical analysis. These are measured by using a refractometer operating at six different wavelengths. We provide a short description of the measurement setup and present a detailed uncertainty analysis of the measurement system to provide a measure of the reliability of the data. We conclude with a catalog of refractive indices and Sellmeier coefficients of the measured liquids and show the location of the analyzed materials in an Abbe diagram.

3.
PLoS One ; 17(9): e0274593, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36166433

RESUMO

Fluorescence optical imaging technique (FOI) is a well-established and valid method for visualization of changes in micro vascularization at different organ systems. As increased vascularization is an early feature of joint inflammation, FOI is a promising method to assess arthritis of the hands. But usability of the method is limited to the assessors experience as the measurement of FOI is semi-quantitative using an individual grading system such as the fluorescence optical imaging activity score (FOIAS). The goal of the study was to automatically and thus, objectively analyze the measured fluorescence intensity generated by FOI to evaluate the amount of inflammation of each of the subject's joints focusing on the distinction between normal joint status or arthritis in psoriatic arthritis patients compared to healthy volunteers. Due to the heterogeneity of the pathophysiological perfusion of the hands, a method to overcome the absoluteness of the data by extracting heatmaps out of the image stacks is developed. To calculate a heatmap for one patient, firstly the time series for each pixel is extracted, which is then represented by a feature value. Secondly, all feature values are clustered. The calculated cluster values represent the relativity between the different pixels and enable a comparison of multiple patients. As a metric to quantify the conspicuousness of a joint a score is calculated based on the extracted cluster values. These steps are repeated for a total number of three features. With this method a tendency towards a classification into unaffected and inflamed joints can be achieved. However, further research is necessary to transform the tendency into a robust classification model.


Assuntos
Artrite Psoriásica , Imagem Óptica , Artrite Psoriásica/diagnóstico por imagem , Humanos , Inflamação , Imagem Óptica/métodos
4.
Light Sci Appl ; 5(4): e16058, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30167156

RESUMO

We present the design, fabrication and characterization of hydraulically-tunable hyperchromatic lenses for two-dimensional (2D) spectrally-resolved spectral imaging. These hyperchromatic lenses, consisting of a positive diffractive lens and a tunable concave lens, are designed to have a large longitudinal chromatic dispersion and thus axially separate the images of different wavelengths from each other. 2D objects of different wavelengths can consequently be imaged using the tunability of the lens system. Two hyperchromatic lens concepts are demonstrated and their spectral characteristics as well as their functionality in spectral imaging applications are shown.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa