Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Chemistry ; 30(11): e202301948, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38081801

RESUMO

The application of supramolecular templates in aligning atomically precise heterometal arrays is important for pursuing functional materials. Herein, we report that a bilayered supramolecular tri-deprotonated melamine dimer functions as an effective template in the construction of a heterometallic gold(I)-silver(I) macrocyclic cluster [µ6 -(C3 N6 H3 )3- ]2 -AuI 6 AgI 6 . X-ray single crystal structural analysis showed that a crown-like AuI 6 AgI 6 macrocycle is aligned around two parallelly stacked µ6 -(C3 N6 H3 )3- moieties hold together with π-π interactions. Theoretical calculations revealed that the [µ6 -(C3 N6 H3 )3- ]2 motif dominantly contributes to the near-occupied orbitals in the electronic structure, which is closely related to its luminescence properties. This work demonstrates that the supramolecular templates containing multiple symmetric binding sites may present a facile approach in the construction of functional metal clusters.

2.
Chemistry ; 30(16): e202303078, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38205968

RESUMO

We have previously reported the first formal hydroamination of enamines for the synthesis of chiral 1,2-diamines. Here, we describe: (i) the discovery, optimization, and substrate expansion of this reaction; (ii) a novel and straightforward protocol for the "click-type" synthesis of enamines in quantitative yield utilizing sodium sulfate in a dual role as an ancillary and dehydrating agent without the need for workup or purification; (iii) the application of this methodology to the first enantioselective synthesis of orthogonally protected 1,1'-(1-(4-fluorophenyl)ethane-1,2-diyl) piperazines, a scaffold for rapid lead optimization in drug discovery; (iv) a computational investigation into the mechanism and rationalization of the enantioselectivities of the reaction.

3.
J Org Chem ; 89(9): 6180-6192, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38632865

RESUMO

The photochemistry of noncovalent interactions to promote organic transformations is an emerging approach to providing fresh opportunities in synthetic chemistry. Generally, the external substance is necessary to add as an interaction partner, thereby sacrificing the atom economy of the reaction. Herein, we describe a catalyst-free and noncovalent interaction-mediated strategy to access the olefination of N-tosylhydrazones using acetone as a solvent and an interaction partner. This protocol also features broad substrate scope, excellent functional group compatibility, and mild reaction conditions without transition metals. Moreover, the gram-scale synthesis of olefins and the generation of pharmaceutical intermediates highlighted its practical applicability. Lastly, mechanistic studies indicate that the reaction was initiated via noncovalent interactions between acetone and N-tosylhydrazone anion, which is also supported by density functional theory calculations.

4.
Angew Chem Int Ed Engl ; 63(1): e202315092, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37943545

RESUMO

A PdII -catalyzed, domino enantioselective desymmetrizative coupling of 7-azabenzonorbornadienes with alkynylanilines is disclosed herein. This operationally simple transformation generates three covalent bonds and two contiguous stereocenters with excellent enantio- and diastereo-selectivity. The resulting functionalized indole-dihydronaphthalene-amine conjugates served as an appealing platform to streamline the diversity-oriented synthesis (DOS) of other valuable enantioenriched compounds. DFT calculations revealed that the two stabilizing non-covalent interactions contributed to the observed enantioselectivity.

5.
Angew Chem Int Ed Engl ; 63(8): e202316454, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38155472

RESUMO

In the chemistry community, catalytic asymmetric synthesis of furan-based compounds bearing both axial and central chirality has proven to be a significant but challenging issue owing to the importance and difficulty in constructing such frameworks. In this work, we have realized the first catalytic asymmetric synthesis of five-five-membered furan-based compounds bearing both axial and central chirality via organocatalytic asymmetric (2+4) annulation of achiral furan-indoles with 2,3-indolyldimethanols with uncommon regioselectivity. By this strategy, furan-indole compounds bearing both axial and central chirality were synthesized in high yields with excellent regio-, diastereo-, and enantioselectivities. Moreover, theoretical calculations were conducted to provide an in-depth understanding of the reaction pathway, activation mode, and the origin of the selectivity.

6.
Angew Chem Int Ed Engl ; 63(23): e202402038, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38412055

RESUMO

A novel enantioselective Tsuji-Trost-type cross coupling reaction between gem-difluorinated cyclopropanes and N-unprotected amino acid esters enabled by synergistic Pd/Ni/chiral aldehyde catalysis is presented herein. This transformation streamlined the diversity-oriented synthesis (DOS) of optically active α-quaternary α-amino acid esters bearing a linear 2-fluoroallylic motif, which served as an appealing platform for the construction of other valuable enantioenriched compounds. The key intermediates were confirmed by HRMS detection, while DFT calculations revealed that the excellent enantioselectivity was attributed to the stabilizing non-covalent interactions between the Pd(II)-π-fluoroallyl species and the Ni(II)-Schiff base complex.

7.
J Phys Chem A ; 127(45): 9473-9482, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37824456

RESUMO

The detailed mechanism for NHC-Cu(I)-catalyzed intermolecular nucleophilic substitution of the C-H bonds at aniline (2-methyl-N-methoxyaniline) was studied via DFT methods to reveal the essence of the selectivity. Calculations revealed that the meta C-H functionalization proceeds via two nucleophilic attacks on the aromatic ring rather than a one-step meta C-H substitution to give the experimentally observed major product. The reaction is initiated by activation of the substrate via oxidative addition with an NHC-Cu(I) catalyst, through which an umpolung occurs at the ring. From the activated intermediate, methoxyl group transfer to benzyl forms a resting state, while a nucleophile can attack the ortho position of benzyl to form a more stable intermediate. The nucleophile group can then transfer to the meta position by a 1,2-Wagner-Meerwein rearrangement to form the final product through a proton shuttle. In contrast, other transfer processes affording ortho- or para-substituted products encounter higher activation barriers. This work investigates the relationship of product selectivity with the umpolung of the aromatic ring, as well as the priority of a nucleophilic attack at the ortho position of the aromatic, 1,2-Wagner-Meerwein rearrangement from the ortho-substituted intermediate, and proton shuttle from the meta-substituted intermediate.

8.
Angew Chem Int Ed Engl ; 62(51): e202315438, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37920927

RESUMO

A unique Pd-catalyzed approach for asymmetric (4+1) annulations via cascade allylation and transient σ-alkyl-Pd(II) initiated methylene Csp3 -H activation is reported. The enolate fragment derived from the decarboxylation of vinyl methylene carbonate is crucial to stabilize the key intermediate. These reactions enable the synthesis of various useful dihydrobenzofurans with excellent enantioselectivity, typically >95 : 5 er, and exclusive (Z)-stereoselectivity. Compared with the well-established annulations via Heck-type C-H activations, this protocol showcases a conceptually new way to generate σ-alkyl-Pd(II) species that could initiate challenging asymmetric Csp3 -H activations.

9.
Angew Chem Int Ed Engl ; 62(45): e202312793, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37724438

RESUMO

Insertion reactions that involve stabilized electrophilic metallocarbenes are of great importance for installing α-heteroatoms to carbonyl compounds. Nevertheless, the limited availability of carbene precursors restricts the introduction of only a single heteroatom. In this report, we describe a new approach based on an I(III) /S(VI) reagent that promotes the cascade insertion of heteroatoms. This is achieved by sequentially generating two α-heteroatom-substituted metal carbenes in one reaction. We found that this mixed I(III) /S(VI) ylide reacts efficiently with a transition metal catalyst and an X-H bond (where X=O, N). This transformation leads to the sequential formation of a sulfoxonium- and an X-substituted Rh-carbenes, enabling further reactions with another Y-H bond. Remarkably, a wide range of symmetrical and unsymmetrical α,α-O,O-, α,α-O,N-, and α,α-N,N-subsituted ketones can be prepared under mild ambient conditions. In addition, we successfully demonstrated other cascades, such as CN/CN double amidation, C-H/C-S double insertion, and C-S/Y-H double insertion (where Y=S, N, O, C). Notably, the latter two cascades enabled the simultaneous installation of three functional groups to the α-carbon of carbonyl compounds in a single step. These reactions demonstrate the versatility of our approach, allowing for the synthesis of ketones and esters with multiple α-heteroatoms using a common precursor.

10.
Angew Chem Int Ed Engl ; 62(15): e202300419, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36749711

RESUMO

This study establishes the first organocatalytic enantioselective synthesis of axially chiral N,N'-bisindoles via chiral phosphoric acid-catalyzed formal (3+2) cycloadditions of indole-based enaminones as novel platform molecules with 2,3-diketoesters, where de novo indole-ring formation is involved. Using this new strategy, various axially chiral N,N'-bisindoles were synthesized in good yields and with excellent enantioselectivities (up to 87 % yield and 96 % ee). More importantly, this class of axially chiral N,N'-bisindoles exhibited some degree of cytotoxicity toward cancer cells and was derived into axially chiral phosphine ligands with high catalytic activity. This study provides a new strategy for enantioselective synthesis of axially chiral N,N'-bisindoles using asymmetric organocatalysis and is the first to realize the applications of such scaffolds in medicinal chemistry and asymmetric catalysis.

11.
Angew Chem Int Ed Engl ; 62(37): e202305450, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37345905

RESUMO

Catalytic asymmetric construction of chiral indole-fused rings has become an important issue in the chemical community because of the significance of such scaffolds. In this work, we have accomplished the first catalytic asymmetric (4+2) and (4+3) cycloadditions of 2,3-indolyldimethanols by using indoles and 2-naphthols as suitable reaction partners under the catalysis of chiral phosphoric acids, constructing enantioenriched indole-fused six-membered and seven-membered rings in high yields with excellent enantioselectivities. In addition, this approach is used to realize the first enantioselective construction of challenging tetrahydroindolocarbazole scaffolds, which are found to show promising anticancer activity. More importantly, theoretical calculations of the reaction pathways and activation mode offer an in-depth understanding of this class of indolylmethanols. This work not only settles the challenges in realizing catalytic asymmetric cycloadditions of indolyldimethanols but also provides a powerful strategy for the construction of enantioenriched indole-fused rings.

12.
Angew Chem Int Ed Engl ; 62(33): e202306748, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37366116

RESUMO

Two metallofullerene frameworks (MFFs) constructed from a penta-shell Keplerate cuprofullerene chloride, C60 @Cu24 @Cl44 @Cu12 @Cl12 , have been successfully prepared via a C60 -templated symmetry-driven strategy. The icosahedral cuprofullerene chloride is assembled on a C60 molecule through [η2 -(C=C)]-CuI and CuI -Cl coordination bonds, resulting in the penta-shell Keplerate with the C60 core canopied by 24 Cu, 44 Cl, 12 Cu and 12 Cl atoms that fulfill the tic@rco@oae@ico@ico penta-shell polyhedral configuration. By sharing the outmost-shell Cl atoms, the cuprofullerene chlorides are connected into 2D or 3D (snf net) frameworks. TD-DFT calculations reveal that the charge transfer from the outmost CuI and Cl to C60 core is responsible for their light absorption expansion to near-infrared region, implying anionic halogenation may be an effective strategy to tune the light absorption properties of metallofullerene materials.

13.
J Org Chem ; 87(5): 3066-3078, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35152704

RESUMO

Herein, we report a novel strategy for the formation of copper carbene via the cycloisomerization of the π-alkyne-Cu(I) complex from terminal alkynes and tropylium tetrafluoroborate. Mechanistic studies and DFT calculations indicate that the reaction undergoes the intramolecular cycloisomerization process from the π-alkyne-Cu(I) complex to afford the copper carbene intermediate, followed by migratory insertion with the second terminal alkyne to afford the barbaralyl-substituted allenyl acid esters. In addition, we develop a mild and highly efficient Cu(I)-catalyzed cross-coupling protocol to synthesize 7-alkynyl cycloheptatrienes that has a broad functional group tolerance and is applicable to the late-stage functionalization of natural products.

14.
Angew Chem Int Ed Engl ; 61(7): e202112226, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-34846087

RESUMO

A new class of axially chiral styrene-based thiourea tertiary amine catalysts, which have unique characteristics such as an efficient synthetic route, multiple chiral elements, and multiple activating groups, has been rationally designed. These new chiral catalysts have proven to be efficient organocatalysts, enabling the chemo-, diastereo-, and enantioselective (2+4) cyclization of 2-benzothiazolimines with homophthalic anhydrides in good yields (up to 96 %) with excellent stereoselectivities (all >95:5 dr, up to 98 % ee). More importantly, theoretical calculations elucidated the important role of an axially chiral styrene moiety in controlling both the reactivity and enantioselectivity. This work not only represents the first design of styrene-based chiral thiourea tertiary amine catalysts and the first catalytic asymmetric (2+4) cyclization of 2-benzothiazolimines, but also gives an in-depth understanding of axially chiral styrene-based organocatalysts.

15.
Molecules ; 26(21)2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34771158

RESUMO

Catalytic asymmetric [2 + 4] cycloadditions of 3-vinylindoles with ortho-quinone methides and their precursors were carried out in the presence of chiral phosphoric acid to afford a series of indole-containing chroman derivatives with structural diversity in overall high yields (up to 98%), good diastereoselectivities (up to 93:7 dr) and moderate to excellent enantioselectivities (up to 98% ee). This approach not only enriches the chemistry of catalytic asymmetric cycloadditions involving 3-vinylindoles but is also useful for synthesizing chiral chroman derivatives.

16.
Inorg Chem ; 59(1): 523-532, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31809032

RESUMO

Synthesis of the multidentate coordinated chelate N3C-H2, composed of a linked functional pyridyl pyrazole fragment plus a peripheral phenyl and pyridyl unit, was obtained using a multistep protocol. Preparation of Ir(III) metal complexes bearing a N3C chelate in the tridentate (κ3), tetradentate (κ4), and pentadentate (κ5) modes was executed en route from two nonemissive dimer intermediates [Ir(κ3-N3CH)Cl2]2 (1) and [Ir(κ4-N3C)Cl]2 (2). Next, a series of mononuclear Ir(III) complexes with the formulas [Ir(κ4-N3C)Cl(py)] (3), [Ir(κ4-N3C)Cl(dmap)] (4), [Ir(κ4-N3C)Cl(mpzH)] (5), and [Ir(κ4-N3C)Cl(dmpzH)] (6), as well as diiridium complexes [Ir2(κ5-N3C)(mpz)2(CO)(H)2] (7) and [Ir2(κ5-N3C)(dmpz)2(CO)(H)2] (8), were obtained upon treatment of dimer 2 with pyridine (py), 4-dimethylaminopyridine (dmap), 4-methylpyrazole (mpzH), and 3,5-dimethylpyrazole (dmpzH), respectively. These Ir(III) metal complexes were identified using spectroscopic methods and by X-ray crystallographic analysis of representative derivatives 3, 5, and 7. Their photophysical and electrochemical properties were investigated and confirmed by the theoretical simulations. Notably, green-emitting organic light-emitting diode (OLED) on the basis of Ir(III) complex 7 gives a maximum external quantum efficiency up to 25.1%. This result sheds light on the enormous potential of this tetradentate coordinated chelate in the development of highly efficient iridium complexes for OLED applications.

17.
J Org Chem ; 84(15): 9454-9459, 2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-31283220

RESUMO

The progressively improved heterobimetallic antimony transition metal complex PSbP-Pt (I1) provides superior activity in catalyzed 1,6-enyne cycloisomerization. Our DFT calculations demonstrate that the noninnocent character of the antimony ligand enhances the self-activation of the catalyst precursor through a substrate-aided intramolecular chloride migration, which triggers subsequent reaction. Designed alternative redox noninnocent active species with strong electron-withdrawing groups also show promising catalytic ability due to an electron-deficient antimony ligand, which lowers the typical reaction barrier for the cycloisomerization of 1,6-enyne.

18.
Phys Chem Chem Phys ; 18(6): 4860-70, 2016 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-26804824

RESUMO

Improving the catalytic efficiency of CO2 hydrogenation is a big challenge in catalysed CO2 recycling and H2 conservation. The detailed mechanism of [Rh(PCH2X(R)CH2P)2](+) (X(R) = CH2, N-CH3, CF2) catalyzed CO2 hydrogenation is studied to obtain insights into the electronic effect of the substituents at diphosphine ligand on the catalytic efficiency. The most favorable reaction mechanism is found to be composed of three steps: (1) oxidative addition of dihydrogen onto the Rh center of the catalyst; (2) the first hydride abstraction by base from the Rh dihydride complexes; (3) the second hydride transfer from the Rh hydride complexes to CO2. It was found that the transition state for the first hydride abstraction from the Rh dihydride complex is the TOF-determining transition state (TDTS) in the most favorable mechanism. The energetic span (δE) of the cycle is suggested related to the thermodynamic hydricity of the Rh dihydride complex. Model catalyst [Rh(PCH2CF2CH2P)2](+) with a strong σ electron withdrawing group on the diphosphine ligand provides higher hydricity in the Rh dihydride complex and lower activation energy when compared with the other two catalysts. Our study shows that it is the σ electron withdrawing ability rather than the electron donating ability that enhances the catalytic efficiency in catalyzed CO2 hydrogenation. This finding will benefit ligand design in transition metal catalysts and lead to more efficient methods for CO2 transformation.

19.
Angew Chem Int Ed Engl ; 55(21): 6295-9, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27061132

RESUMO

An enantioselective rhodium(I)-catalyzed cycloisomerization reaction of challenging (E)-1,6-enynes is reported. This novel process enables (E)-1,6-enynes with a wide range of functionalities, including nitrogen-, oxygen-, and carbon-tethered (E)-1,6-enynes, to undergo cycloisomerization with excellent enantioselectivity, in a high-yielding and operationally simple manner. Moreover, this Rh(I) -diphosphane catalytic system also exhibited superior reactivity and enantioselectivity for (Z)-1,6-enynes. A rationale for the striking reactivity difference between (E)- and (Z)-1,6-enynes using Rh(I) -BINAP and Rh(I) -TangPhos is outlined using DFT studies to provide the necessary insight for the design of new catalyst systems and the application to synthesis.

20.
Inorg Chem ; 53(18): 9692-702, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25184506

RESUMO

Platinum bis(dithiolene) complexes have reactivity toward alkenes like nickel bis(dithiolene) complexes. We examined the uptake of 1,3-butadiene by platinum bis(dithiolene) [Pt(tfd)2] (tfd = S2C2(CF3)2) via a density functional theory study; both 1,2- and 1,4-additions of 1,3-butadiene to the ligands of Pt(tfd)2 to form both interligand and intraligand adducts were studied. For single 1,3-butadiene addition, direct 1,4-addition on interligand S-S, 1,2-addition on intraligand S-S, and 1,4-addition on intraligand S-C are all feasible at room temperature and are controlled by the symmetry of the highest occupied molecular orbital of 1,3-butadiene and the lowest unoccupied molecular orbital of Pt(tfd)2. However, the formation of the interligand S-S adduct through 1,4-addition of one molecule of cis-1,3-butadiene is the most favorable route, with a reaction barrier of 9.3 kcal/mol. The other two addition processes cannot compete with this one due to both higher reaction barriers and unstable adducts. Other possible pathways, such as formation of cis-interligand S-S adduct from 1,2-addition of one molecule of 1,3-butadiene via a twisted trans-interligand S-S adduct, have higher barriers. Our calculated results show that 1,4-addition of a single molecule of 1,3-butadiene on the interligand S-S gives the kinetically stable product by a one-step pathway. But of at least equal importance is the apofacial 1,4-addition of two molecules of 1,3-butadiene on the intraligand S-C of the same ligand on Pt(tfd)2, which yields the thermodynamically stable product, obtained via a short lifetime intermediate, the 1:1 intraligand S-C adduct, being formed through several pathways. The calculated results in this study well explain the experimental observation that 1:1 interligand S-S adduct was formed in a short time, and the intraligand S-C adduct from two molecules of cis-1,3-butadiene was accumulated in 20 h at 50° and characterized by X-ray crystallography.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa